62 research outputs found
Towards nonlinear quantum Fokker-Planck equations
It is demonstrated how the equilibrium semiclassical approach of Coffey et
al. can be improved to describe more correctly the evolution. As a result a new
semiclassical Klein-Kramers equation for the Wigner function is derived, which
remains quantum for a free quantum Brownian particle as well. It is transformed
to a semiclassical Smoluchowski equation, which leads to our semiclassical
generalization of the classical Einstein law of Brownian motion derived before.
A possibility is discussed how to extend these semiclassical equations to
nonlinear quantum Fokker-Planck equations based on the Fisher information
The resummation of inter-jet energy flow for gaps-between-jets processes at HERA
We calculate resummed perturbative predictions for gaps-between-jets
processes and compare to HERA data. Our calculation of this non-global
observable needs to include the effects of primary gluon emission (global
logarithms) and secondary gluon emission (non-global logarithms) to be correct
at the leading logarithm (LL) level. We include primary emission by calculating
anomalous dimension matrices for the geometry of the specific event definitions
and estimate the effect of non-global logarithms in the large limit. The
resulting predictions for energy flow observables are consistent with
experimental data.Comment: 31 pages, 4 figures, 2 table
Inclusive particle production at HERA: Higher-order QCD corrections to the resolved quasi-real photon contribution
We calculate in next-to-leading order inclusive cross sections of
single-particle production via resolved photons in collisions at HERA.
Transverse-momentum and rapidity distributions are presented and the scale
dependence is studied. The results are compared with first experimental data
from the H1 Collaboration at HERA.Comment: 11 pages with 15 uuencoded PS figures. Preprint DESY 93-03
A quantum-like description of the planetary systems
The Titius-Bode law for planetary distances is reviewed. A model describing
the basic features of this rule in the "quantum-like" language of a wave
equation is proposed. Some considerations about the 't Hooft idea on the
quantum behaviour of deterministic systems with dissipation are discussed.Comment: LaTex file, 17 pages, no figures. Version published in Foundations of
Physics, August 200
On the complementarity of the quadrature observables
In this paper we investigate the coupling properties of pairs of quadrature
observables, showing that, apart from the Weyl relation, they share the same
coupling properties as the position-momentum pair. In particular, they are
complementary. We determine the marginal observables of a covariant phase space
observable with respect to an arbitrary rotated reference frame, and observe
that these marginal observables are unsharp quadrature observables. The related
distributions constitute the Radon tranform of a phase space distribution of
the covariant phase space observable. Since the quadrature distributions are
the Radon transform of the Wigner function of a state, we also exhibit the
relation between the quadrature observables and the tomography observable, and
show how to construct the phase space observable from the quadrature
observables. Finally, we give a method to measure together with a single
measurement scheme any complementary pair of quadrature observables.Comment: Dedicated to Peter Mittelstaedt in honour of his eightieth birthda
Reheating and turbulence
We show that the ''turbulent'' particle spectra found in numerical
simulations of the behavior of matter fields during reheating admit a simple
interpretation in terms of hydrodynamic models of the reheating period. We
predict a particle number spectrum with for Comment: 10 pages, one figure included in tex
Collective excitations of a trapped boson-fermion mixture across demixing
We calculate the spectrum of low-lying collective excitations in a mesoscopic
cloud formed by a Bose-Einstein condensate and a spin-polarized Fermi gas as a
function of the boson-fermion repulsions. The cloud is under isotropic harmonic
confinement and its dynamics is treated in the collisional regime by using the
equations of generalized hydrodynamics with inclusion of surface effects. For
large numbers of bosons we find that, as the cloud moves towards spatial
separation (demixing) with increasing boson-fermion coupling, the frequencies
of a set of collective modes show a softening followed by a sharp upturn. This
behavior permits a clear identification of the quantum phase transition. We
propose a physical interpretation for the dynamical transition point in a
confined mixture, leading to a simple analytical expression for its location.Comment: revtex4, 9 pages, 8 postscript file
Photon and Z induced heavy charged lepton pair production at a hadron supercollider
We investigate the pair production of charged heavy leptons via
photon-induced processes at the proposed CERN Large Hadron Collider (LHC).
Using effective photon and Z approximations, rates are given for
production due to fusion and fusion for the cases of
inelastic, elastic and semi-elastic collisions. These are compared with
the corresponding rates for production via the gluon fusion and Drell-Yan
mechanisms. Various and differential luminosities
for collisions are also presented.Comment: 22 pages, RevTex 3.0, 6 uuencoded and compressed postscript figures
included. Reference to one paper changed from the original preprint number to
the published version. Everything else unchange
Dynamical properties of the unitary Fermi gas: collective modes and shock waves
We discuss the unitary Fermi gas made of dilute and ultracold atoms with an
infinite s-wave inter-atomic scattering length. First we introduce an efficient
Thomas-Fermi-von Weizsacker density functional which describes accurately
various static properties of the unitary Fermi gas trapped by an external
potential. Then, the sound velocity and the collective frequencies of
oscillations in a harmonic trap are derived from extended superfluid
hydrodynamic equations which are the Euler-Lagrange equations of a
Thomas-Fermi-von Weizsacker action functional. Finally, we show that this
amazing Fermi gas supports supersonic and subsonic shock waves.Comment: 9 pages, 3 figures, invited talk at the International Workshop
"Critical Stability 2011" (Erice, October 2011), to be published in the
journal Few Body System
- …