56 research outputs found

    First report from the German COVID-19 autopsy registry

    Get PDF
    BACKGROUND: Autopsies are an important tool in medicine, dissecting disease pathophysiology and causes of death. In COVID-19, autopsies revealed e.g., the effects on pulmonary (micro)vasculature or the nervous system, systemic viral spread, or the interplay with the immune system. To facilitate multicentre autopsy-based studies and provide a central hub supporting autopsy centres, researchers, and data analyses and reporting, in April 2020 the German COVID-19 Autopsy Registry (DeRegCOVID) was launched. METHODS: The electronic registry uses a web-based electronic case report form. Participation is voluntary and biomaterial remains at the respective site (decentralized biobanking). As of October 2021, the registry included N=1129 autopsy cases, with 69271 single data points including information on 18674 available biospecimens gathered from 29 German sites. FINDINGS: In the N=1095 eligible records, the male-to-female ratio was 1·8:1, with peaks at 65-69 and 80-84 years in males and >85 years in females. The analysis of the chain of events directly leading to death revealed COVID-19 as the underlying cause of death in 86% of the autopsy cases, whereas in 14% COVID-19 was a concomitant disease. The most common immediate cause of death was diffuse alveolar damage, followed by multi-organ failure. The registry supports several scientific projects, public outreach and provides reports to the federal health authorities, leading to legislative adaptation of the German Infection Protection Act, facilitating the performance of autopsies during pandemics. INTERPRETATION: A national autopsy registry can provide multicentre quantitative information on COVID-19 deaths on a national level, supporting medical research, political decision-making and public discussion. FUNDING: German Federal Ministries of Education and Research and Health. Hintergrund: Obduktionen sind ein wichtiges Instrument in der Medizin, um die Pathophysiologie von Krankheiten und Todesursachen zu untersuchen. Im Rahmen von COVID-19 wurden durch Obduktionen z.B. die Auswirkungen auf die pulmonale Mikrovaskulatur, das Nervensystem, die systemische Virusausbreitung, und das Zusammenspiel mit dem Immunsystem untersucht. Um multizentrische, auf Obduktionen basierende Studien zu erleichtern und eine zentrale Anlaufstelle zu schaffen, die Obduktionszentren, Forscher sowie Datenanalysen und -berichte unterstĂŒtzt, wurde im April 2020 das deutsche COVID-19-Autopsieregister (DeRegCOVID) ins Leben gerufen. Methoden: Das elektronische Register verwendet ein webbasiertes elektronisches Fallberichtsformular. Die Teilnahme ist freiwillig und das Biomaterial verbleibt am jeweiligen Standort (dezentrales Biobanking). Im Oktober 2021 umfasste das Register N=1129 ObduktionsfĂ€lle mit 69271 einzelnen Datenpunkten, die Informationen ĂŒber 18674 verfĂŒgbare Bioproben enthielten, die von 29 deutschen Standorten gesammelt wurden. Ergebnisse: In den N=1095 ausgewerteten DatensĂ€tzen betrug das VerhĂ€ltnis von MĂ€nnern zu Frauen 1,8:1 mit Spitzenwerten bei 65-69 und 80-84 Jahren bei MĂ€nnern und >85 Jahren bei Frauen. Die Analyse der Sequenz der unmittelbar zum Tod fĂŒhrenden Ereignisse ergab, dass in 86 % der ObduktionsfĂ€lle COVID-19 die zugrunde liegende Todesursache war, wĂ€hrend in 14 % der FĂ€lle COVID-19 eine Begleiterkrankung war. Die hĂ€ufigste unmittelbare Todesursache war der diffuse Alveolarschaden, gefolgt von Multiorganversagen. Das Register unterstĂŒtzt mehrere wissenschaftliche Projekte, die Öffentlichkeitsarbeit und liefert Berichte an die Bundesgesundheitsbehörden, was zu einer Anpassung des deutschen Infektionsschutzgesetzes fĂŒhrte und die DurchfĂŒhrung von Obduktionen in Pandemien erleichtert. Interpretation: Ein nationales Obduktionsregister kann multizentrische quantitative Informationen ĂŒber COVID-19-TodesfĂ€lle auf nationaler Ebene liefern und damit die medizinische Forschung, die politische Entscheidungsfindung und die öffentliche Diskussion unterstĂŒtzen. Finanzierung: Bundesministerien fĂŒr Bildung und Forschung und fĂŒr Gesundheit

    Intracranial hemorrhage in COVID-19 patients during extracorporeal membrane oxygenation for acute respiratory failure: a nationwide register study report

    Get PDF
    BACKGROUND: In severe cases, SARS-CoV-2 infection leads to acute respiratory distress syndrome (ARDS), often treated by extracorporeal membrane oxygenation (ECMO). During ECMO therapy, anticoagulation is crucial to prevent device-associated thrombosis and device failure, however, it is associated with bleeding complications. In COVID-19, additional pathologies, such as endotheliitis, may further increase the risk of bleeding complications. To assess the frequency of bleeding events, we analyzed data from the German COVID-19 autopsy registry (DeRegCOVID). METHODS: The electronic registry uses a web-based electronic case report form. In November 2021, the registry included N = 1129 confirmed COVID-19 autopsy cases, with data on 63 ECMO autopsy cases and 1066 non-ECMO autopsy cases, contributed from 29 German sites. FINDINGS: The registry data showed that ECMO was used in younger male patients and bleeding events occurred much more frequently in ECMO cases compared to non-ECMO cases (56% and 9%, respectively). Similarly, intracranial bleeding (ICB) was documented in 21% of ECMO cases and 3% of non-ECMO cases and was classified as the immediate or underlying cause of death in 78% of ECMO cases and 37% of non-ECMO cases. In ECMO cases, the three most common immediate causes of death were multi-organ failure, ARDS and ICB, and in non-ECMO cases ARDS, multi-organ failure and pulmonary bacterial ± fungal superinfection, ordered by descending frequency. INTERPRETATION: Our study suggests the potential value of autopsies and a joint interdisciplinary multicenter (national) approach in addressing fatal complications in COVID-19. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-022-03945-x

    Contamination of personal protective equipment during COVID-19 autopsies

    Get PDF
    Confronted with an emerging infectious disease at the beginning of the COVID-19 pandemic, the medical community faced concerns regarding the safety of autopsies on those who died of the disease. This attitude has changed, and autopsies are now recognized as indispensable tools for understanding COVID-19, but the true risk of infection to autopsy staff is nevertheless still debated. To clarify the rate of SARS-CoV-2 contamination in personal protective equipment (PPE), swabs were taken at nine points in the PPE of one physician and one assistant after each of 11 full autopsies performed at four centers. Swabs were also obtained from three minimally invasive autopsies (MIAs) conducted at a fifth center. Lung/bronchus swabs of the deceased served as positive controls, and SARS-CoV-2 RNA was detected by real-time RT-PCR. In 9 of 11 full autopsies, PPE samples tested RNA positive through PCR, accounting for 41 of the 198 PPE samples taken (21%). The main contaminated items of the PPE were gloves (64% positive), aprons (50% positive), and the tops of shoes (36% positive) while the fronts of safety goggles, for example, were positive in only 4.5% of the samples, and all the face masks were negative. In MIAs, viral RNA was observed in one sample from a glove but not in other swabs. Infectious virus isolation in cell culture was performed on RNA-positive swabs from the full autopsies. Of all the RNA-positive PPE samples, 21% of the glove samples, taken in 3 of 11 full autopsies, tested positive for infectious virus. In conclusion, PPE was contaminated with viral RNA in 82% of autopsies. In 27% of autopsies, PPE was found to be contaminated even with infectious virus, representing a potential risk of infection to autopsy staff. Adequate PPE and hygiene measures, including appropriate waste deposition, are therefore essential to ensure a safe work environment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00428-021-03263-7

    Deep-Learning based segmentation and quantification in experimental kidney histopathology

    Get PDF
    BACKGROUND: Nephropathologic analyses provide important outcomes-related data in experiments with the animal models that are essential for understanding kidney disease pathophysiology. Precision medicine increases the demand for quantitative, unbiased, reproducible, and efficient histopathologic analyses, which will require novel high-throughput tools. A deep learning technique, the convolutional neural network, is increasingly applied in pathology because of its high performance in tasks like histology segmentation. METHODS: We investigated use of a convolutional neural network architecture for accurate segmentation of periodic acid-Schiff-stained kidney tissue from healthy mice and five murine disease models and from other species used in preclinical research. We trained the convolutional neural network to segment six major renal structures: glomerular tuft, glomerulus including Bowman\u27s capsule, tubules, arteries, arterial lumina, and veins. To achieve high accuracy, we performed a large number of expert-based annotations, 72,722 in total. RESULTS: Multiclass segmentation performance was very high in all disease models. The convolutional neural network allowed high-throughput and large-scale, quantitative and comparative analyses of various models. In disease models, computational feature extraction revealed interstitial expansion, tubular dilation and atrophy, and glomerular size variability. Validation showed a high correlation of findings with current standard morphometric analysis. The convolutional neural network also showed high performance in other species used in research-including rats, pigs, bears, and marmosets-as well as in humans, providing a translational bridge between preclinical and clinical studies. CONCLUSIONS: We developed a deep learning algorithm for accurate multiclass segmentation of digital whole-slide images of periodic acid-Schiff-stained kidneys from various species and renal disease models. This enables reproducible quantitative histopathologic analyses in preclinical models that also might be applicable to clinical studies

    Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles

    Get PDF
    Cancer nanomedicines rely on the enhanced permeability and retention (EPR) effect for efficient target site accumulation. The EPR effect, however, is highly heterogeneous among different tumor types and cancer patients and its extent is expected to dynamically change during the course of nanochemotherapy. Here the authors set out to longitudinally study the dynamics of the EPR effect upon single- and double-dose nanotherapy with fluorophore-labeled and paclitaxel-loaded polymeric micelles. Using computed tomography-fluorescence molecular tomography imaging, it is shown that the extent of nanomedicine tumor accumulation is predictive for therapy outcome. It is also shown that the interindividual heterogeneity in EPR-based tumor accumulation significantly increases during treatment, especially for more efficient double-dose nanotaxane therapy. Furthermore, for double-dose micelle therapy, tumor accumulation significantly increased over time, from 7% injected dose per gram (ID g–1) upon the first administration to 15% ID g–1 upon the fifth administration, contributing to more efficient inhibition of tumor growth. These findings shed light on the dynamics of the EPR effect during nanomedicine treatment and they exemplify the importance of using imaging in nanomedicine treatment prediction and clinical translation

    SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

    Get PDF
    Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human induced pluripotent stem cell-derived kidney organoids with SARS-CoV-2. Single cell RNA-sequencing indicated injury and dedifferentiation of infected cells with activation of pro-fibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in Long-COVID

    Postmortale bildgebende Verfahren : Erfahrungen und Ausblicke

    No full text
    <p>Average Literacy Scores by Self-Rated Health Category for U.S.-Born and Immigrant Respondents (95% CIs) (N = 4,664).</p

    Update zur kooperativen autopsiebasierten Forschung in der deutschen Pathologie, Neuropathologie und Gerichtsmedizin

    No full text
    BACKGROUND: Autopsies are a valuable tool for understanding disease, including COVID-19. MATERIALS AND METHODS: The German Registry of COVID-19 Autopsies (DeRegCOVID), established in April 2020, serves as the electronic backbone of the National Autopsy Network (NATON), launched in early 2022 following DEFEAT PANDEMIcs. RESULTS: The NATON consortium’s interconnected, collaborative autopsy research is enabled by an unprecedented collaboration of 138 individuals at more than 35 German university and non-university autopsy centers through which pathology, neuropathology, and forensic medicine autopsy data including data on biomaterials are collected in DeRegCOVID and tissue-based research and methods development are conducted. More than 145 publications have now emerged from participating autopsy centers, highlighting various basic science and clinical aspects of COVID-19, such as thromboembolic events, organ tropism, SARS-CoV‑2 detection methods, and infectivity of SARS-CoV-2 at autopsy. CONCLUSIONS: Participating centers have demonstrated the high value of autopsy and autopsy-derived data and biomaterials to modern medicine. The planned long-term continuation and further development of the registry and network, as well as the open and participatory design, will allow the involvement of all interested partners
    • 

    corecore