2 research outputs found
Symmetry and species segregation in diffusion-limited pair annihilation
We consider a system of q diffusing particle species A_1,A_2,...,A_q that are
all equivalent under a symmetry operation. Pairs of particles may annihilate
according to A_i + A_j -> 0 with reaction rates k_{ij} that respect the
symmetry, and without self-annihilation (k_{ii} = 0). In spatial dimensions d >
2 mean-field theory predicts that the total particle density decays as n(t) ~
1/t, provided the system remains spatially uniform. We determine the conditions
on the matrix k under which there exists a critical segregation dimension
d_{seg} below which this uniformity condition is violated; the symmetry between
the species is then locally broken. We argue that in those cases the density
decay slows down to n(t) ~ t^{-d/d_{seg}} for 2 < d < d_{seg}. We show that
when d_{seg} exists, its value can be expressed in terms of the ratio of the
smallest to the largest eigenvalue of k. The existence of a conservation law
(as in the special two-species annihilation A + B -> 0), although sufficient
for segregation, is shown not to be a necessary condition for this phenomenon
to occur. We work out specific examples and present Monte Carlo simulations
compatible with our analytical results.Comment: latex, 19 pages, 3 eps figures include