50 research outputs found
Exchange Instabilities in Semiconductor Double Quantum Well Systems
We consider various exchange-driven electronic instabilities in semiconductor
double-layer systems in the absence of any external magnetic field. We
establish that there is no exchange-driven bilayer to monolayer charge transfer
instability in the double-layer systems. We show that, within the unrestricted
Hartree-Fock approximation, the low density stable phase (even in the absence
of any interlayer tunneling) is a quantum ``pseudospin rotated'' spontaneous
interlayer phase coherent spin-polarized symmetric state rather than the
classical Ising-like charge-transfer phase. The U(1) symmetry of the double
quantum well system is broken spontaneously at this low density quantum phase
transition, and the layer density develops quantum fluctuations even in the
absence of any interlayer tunneling. The phase diagram for the double quantum
well system is calculated in the carrier density--layer separation space, and
the possibility of experimentally observing various quantum phases is
discussed. The situation in the presence of an external electric field is
investigated in some detail using the
spin-polarized-local-density-approximation-based self-consistent technique and
good agreement with existing experimental results is obtained.Comment: 24 pages, figures included. Also available at
http://www-cmg.physics.umd.edu/~lzheng/preprint/ct.uu/ . Revised final
version to appear in PR
Challenge of Pigs with Classical Swine Fever Viruses after C-Strain Vaccination Reveals Remarkably Rapid Protection and Insights into Early Immunity
Pre-emptive culling is becoming increasingly questioned as a means of controlling animal diseases, including classical swine fever (CSF). This has prompted discussions on the use of emergency vaccination to control future CSF outbreaks in domestic pigs. Despite a long history of safe use in endemic areas, there is a paucity of data on aspects important to emergency strategies, such as how rapidly CSFV vaccines would protect against transmission, and if this protection is equivalent for all viral genotypes, including highly divergent genotype 3 strains. To evaluate these questions, pigs were vaccinated with the Riemser® C-strain vaccine at 1, 3 and 5 days prior to challenge with genotype 2.1 and 3.3 challenge strains. The vaccine provided equivalent protection against clinical disease caused by for the two challenge strains and, as expected, protection was complete at 5 days post-vaccination. Substantial protection was achieved after 3 days, which was sufficient to prevent transmission of the 3.3 strain to animals in direct contact. Even by one day post-vaccination approximately half the animals were partially protected, and were able to control the infection, indicating that a reduction of the infectious potential is achieved very rapidly after vaccination. There was a close temporal correlation between T cell IFN-γ responses and protection. Interestingly, compared to responses of animals challenged 5 days after vaccination, challenge of animals 3 or 1 days post-vaccination resulted in impaired vaccine-induced T cell responses. This, together with the failure to detect a T cell IFN-γ response in unprotected and unvaccinated animals, indicates that virulent CSFV can inhibit the potent antiviral host defences primed by C-strain in the early period post vaccination
Effect of internal viral sequences on the utility of retroviral vectors.
Expression of the human ADA cDNA encoded by the Moloney murine leukemia virus spliced RNA form is enhanced by intron-contained sequences. The presence of sequences corresponding to the viral gag gene in a Moloney murine leukemia virus-based vector results in the generation of 10- to 40-fold higher titers of virus
Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells
A retrovirus-derived vector called self-inactivating (SIN) vector was designed for the transduction of whole genes into mammalian cells. SIN vectors contain a deletion of 299 base pairs in the 3' long terminal repeat (LTR), which includes sequences encoding the enhancer and promoter functions. When viruses derived from such vectors were used to infect NIH 3T3 cells, the deletion was transferred to the 5' LTR, resulting in the transcriptional inactivation of the provirus in the infected cell. Introduction of a hybrid gene (human metallothionein-promoted c-fos) into cells via a SIN vector was not associated with rearrangements and led to the formation of an authentic mRNA transcript, which in some cases was induced by cadmium. SIN vectors should be particularly useful in gene transfer experiments designed to study the regulated expression of genes in mammalian cells. Absence of enhancer and promoter sequences in both LTRs of the integrated provirus should also minimize the possibility of activating cellular oncogenes and may provide a safer alternative to be used in human gene therapy