723 research outputs found
Density of States of GaAs-AlGaAs Heterostructures Deduced from Temperature Dependend Magnetocapacitance Measurements
Abstract We have analyzed the density of states of a two dimensional electron gas in a GaAs- AlGaAs hetereostructure by measuring the magnetocapacitance in magnetic fields up to 6 Tesla at temperatures below 10 K. The experimental data are well described by a Gaussian-like density of states where the linewidth à is proportional to B
Density of States in Landau Level Tails of GaAs-AlxGa1-xAs Heterostructures
From an analysis of the thermally activated resistivity as a function of the magnetic field in the quantum Hall regime we deduced the position of the Fermi energy in the mobility gap as a function of the filling factor and therefore the density of states. The measured density of states is best described by a Gaussian like profile superimposed on a constant background
Chalker-Coddington model described by an S-matrix with odd dimensions
The Chalker-Coddington network model is often used to describe the transport
properties of quantum Hall systems. By adding an extra channel to this model,
we introduce an asymmetric model with profoundly different transport
properties. We present a numerical analysis of these transport properties and
consider the relevance for realistic systems.Comment: 7 pages, 4 figures. To appear in the EP2DS-17 proceeding
Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum Hall bilayers
The effect of tunneling on the transport properties of} quantum Hall double
layers in the regime of the excitonic condensate at total filling factor one is
studied in counterflow experiments. If the tunnel current is smaller than a
critical , tunneling is large and is effectively shorting the two layers.
For tunneling becomes negligible. Surprisingly, the transition
between the two tunneling regimes has only a minor impact on the features of
the filling-factor one state as observed in magneto-transport, but at currents
exceeding the resistance along the layers increases rapidly
Radiation induced zero-resistance states in GaAs/AlGaAs heterostructures: Voltage-current characteristics and intensity dependence at the resistance minima
High mobility two-dimensional electron systems exhibit vanishing resistance
over broad magnetic field intervals upon excitation with microwaves, with a
characteristic reduction of the resistance with increasing radiation intensity
at the resistance minima. Here, we report experimental results examining the
voltage - current characteristics, and the resistance at the minima vs. the
microwave power. The findings indicate that a non-linear V-I curve in the
absence of microwave excitation becomes linearized under irradiation, unlike
expectations, and they suggest a similarity between the roles of the radiation
intensity and the inverse temperature.Comment: 3 color figures; publishe
An ultra-bright atom laser
We present a novel, ultra-bright atom-laser and ultra-cold thermal atom beam.
Using rf-radiation we strongly couple the magnetic hyperfine levels of 87Rb
atoms in a magnetically trapped Bose-Einstein condensate. At low rf-frequencies
gravity opens a small hole in the trapping potenital and a well collimated,
extremely bright atom laser emerges from just below the condensate. As opposed
to traditional atom lasers based on weak coupling, this technique allows us to
outcouple atoms at an arbitrarily large rate. We demonstrate an increase in
flux per atom in the BEC by a factor of sixteen compared to the brightest
quasi-continuous atom laser. Furthermore, we produce by two orders of magnitude
the coldest thermal atom beam to date (200 nK).Comment: 20 pages, 9 figures, supplementary material online at
http://www.bec.g
- …