59 research outputs found

    Phase Structure of 1d Interacting Floquet Systems I: Abelian SPTs

    Full text link
    Recent work suggests that a sharp definition of `phase of matter' can be given for some quantum systems out of equilibrium---first for many-body localized systems with time independent Hamiltonians and more recently for periodically driven or Floquet localized systems. In this work we propose a classification of the finite abelian symmetry protected phases of interacting Floquet localized systems in one dimension. We find that the different Floquet phases correspond to elements of Cl×AG\text{Cl}\times\mathcal{A}_G, where Cl\text{Cl} is the undriven interacting classification, and AG\mathcal{A}_G is a set of (twisted) 1d representations of GG. We will address symmetry broken phases in a subsequent paper.Comment: 21 pages. Explained connection to the classification schemes in other recent work. Close to published versio

    1D Many-body localized Floquet systems II: Symmetry-Broken phases

    Full text link
    Recent work suggests that a sharp definition of `phase of matter' can be given for periodically driven `Floquet' quantum systems exhibiting many-body localization. In this work we propose a classification of the phases of interacting Floquet localized systems with (completely) spontaneously broken symmetries -- we focus on the one dimensional case, but our results appear to generalize to higher dimensions. We find that the different Floquet phases correspond to elements of Z(G)Z(G), the centre of the symmetry group in question. In a previous paper we offered a companion classification of unbroken, i.e., paramagnetic phases.Comment: Published versio

    Sub-ballistic growth of R\'enyi entropies due to diffusion

    Get PDF
    We investigate the dynamics of quantum entanglement after a global quench and uncover a qualitative difference between the behavior of the von Neumann entropy and higher R\'enyi entropies. We argue that the latter generically grow \emph{sub-ballistically}, as t\propto\sqrt{t}, in systems with diffusive transport. We provide strong evidence for this in both a U(1)(1) symmetric random circuit model and in a paradigmatic non-integrable spin chain, where energy is the sole conserved quantity. We interpret our results as a consequence of local quantum fluctuations in conserved densities, whose behavior is controlled by diffusion, and use the random circuit model to derive an effective description. We also discuss the late-time behavior of the second R\'enyi entropy and show that it exhibits hydrodynamic tails with \emph{three distinct power laws} occurring for different classes of initial states.Comment: close to published version: 4 + epsilon pages, 3 figures + supplemen

    Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation

    Get PDF
    The scrambling of quantum information in closed many-body systems, as measured by out-of-time-ordered correlation functions (OTOCs), has lately received considerable attention. Recently, a hydrodynamical description of OTOCs has emerged from considering random local circuits, aspects of which are conjectured to be universal to ergodic many-body systems, even without randomness. Here we extend this approach to systems with locally conserved quantities (e.g., energy). We do this by considering local random unitary circuits with a conserved U(1)(1) charge and argue, with numerical and analytical evidence, that the presence of a conservation law slows relaxation in both time ordered {\textit{and}} out-of-time-ordered correlation functions, both can have a diffusively relaxing component or "hydrodynamic tail" at late times. We verify the presence of such tails also in a deterministic, peridocially driven system. We show that for OTOCs, the combination of diffusive and ballistic components leads to a wave front with a specific, asymmetric shape, decaying as a power law behind the front. These results also explain existing numerical investigations in non-noisy ergodic systems with energy conservation. Moreover, we consider OTOCs in Gibbs states, parametrized by a chemical potential μ\mu, and apply perturbative arguments to show that for μ1\mu\gg 1 the ballistic front of information-spreading can only develop at times exponentially large in μ\mu -- with the information traveling diffusively at earlier times. We also develop a new formalism for describing OTOCs and operator spreading, which allows us to interpret the saturation of OTOCs as a form of thermalization on the Hilbert space of operators.Comment: Close to published version: 17 + 9.5 pages. Improved presentation. Contains new section on clean Floquet spin chain. New and/or improved numerical data in Figures 4-7, 11, 1

    Defining Time Crystals via Representation Theory

    Full text link
    Time crystals are proposed states of matter which spontaneously break time translation symmetry. There is no settled definition of such states. We offer a new definition which follows the traditional recipe for Wigner symmetries and order parameters. Supplementing our definition with a few plausible assumptions we find that a) systems with time independent Hamiltonians should not exhibit TTSB while b) the recently studied π\pi spin glass/Floquet time crystal can be viewed as breaking a global internal symmetry and as breaking time translation symmetry as befits its two names

    Absolute Stability and Spatiotemporal Long-Range Order in Floquet systems

    Full text link
    Recent work has shown that a variety of novel phases of matter arise in periodically driven Floquet systems. Among these are many-body localized phases which spontaneously break global symmetries and exhibit novel multiplets of Floquet eigenstates separated by quantized quasienergies. Here we show that these properties are stable to all weak local deformations of the underlying Floquet drives -- including those that explicitly break the defining symmetries -- and that the models considered until now occupy sub-manifolds within these larger "absolutely stable" phases. While these absolutely stable phases have no explicit global symmetries, they spontaneously break Hamiltonian dependent emergent symmetries, and thus continue to exhibit the novel multiplet structure. The multiplet structure in turn encodes characteristic oscillations of the emergent order parameter at multiples of the fundamental period. Altogether these phases exhibit a form of simultaneous long-range order in space and time which is new to quantum systems. We describe how this spatiotemporal order can be detected in experiments involving quenches from a broad class of initial states.Comment: Published version. Minor typos corrected, some discussions expande

    Phase transitions in three-dimensional topological lattice models with surface anyons

    Full text link
    We study the phase diagrams of a family of 3D "Walker-Wang" type lattice models, which are not topologically ordered but have deconfined anyonic excitations confined to their surfaces. We add a perturbation (analogous to that which drives the confining transition in Z_p lattice gauge theories) to the Walker-Wang Hamiltonians, driving a transition in which all or some of the variables associated with the loop gas or string-net ground states of these models become confined. We show that in many cases the location and nature of the phase transitions involved is exactly that of a generalized Z_p lattice gauge theory, and use this to deduce the basic structure of the phase diagram. We further show that the relationship between the phases on opposite sides of the transition is fundamentally different than in conventional gauge theories: in the Walker-Wang case, the number of species of excitations that are deconfined in the bulk can increase across a transition that confines only some of the species of loops or string-nets. The analogue of the confining transition in the Walker-Wang models can therefore lead to bulk deconfinement and topological order

    Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance

    Full text link
    We study the emergence of itinerant ferromagnetism in an ultra-cold atomic gas with a variable mass ratio between the up and down spin species. Mass imbalance breaks the SU(2) spin symmetry leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles. Secondly, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These could help future experiments to better identify the putative ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes that handicap the formation of a ferromagnetic state. Finally, we study the time dependent formation of the ferromagnetic phase following a quench in the interaction strength
    corecore