269 research outputs found
Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo
The zebrafish u-boot (ubo) gene encodes the transcription factor Prdm1, which is essential for the specification of the primary slow-twitch muscle fibres that derive from adaxial cells. Here, we show that Prdm1 functions by acting as a transcriptional repressor and that slow-twitch-specific muscle gene expression is activated by Prdm1-mediated repression of the transcriptional repressor Sox6. Genes encoding fast-specific isoforms of sarcomeric proteins are ectopically expressed in the adaxial cells of ubotp39 mutant embryos. By using chromatin immunoprecipitation, we show that these are direct targets of Prdm1. Thus, Prdm1 promotes slow-twitch fibre differentiation by acting as a global repressor of fast-fibre-specific genes, as well as by abrogating the repression of slow-fibre-specific genes
WearCam: A head mounted wireless camera for monitoring gaze attention and for the diagnosis of developmental disorders in young children
Autism covers a large spectrum of disorders that affect the individual’s way of interacting socially and is often revealed by the individual’s lack of interest in gazing at human faces. Currently Autism is diagnosed in children no younger than 2 years old. This paper presents a new monitoring device, the WearCam, to help forming a diagnosis of this neurodevelopmental disorder at an earlier age than currently possible. The WearCam consists of a wireless camera located on the forefront of the child. The WearCam collects videos from the viewpoint of the child’s head. Color detection, face detection and gaze detection are run on the data in order to locate the approximate gaze direction of the child and determine where her attention is drawn to (persons, objects, etc.). We report on early tests of the camera within normally developing children. Firstly the technical characteristics of the current prototype of the WearCam will be described. Afterwards the type of data collected with this device with young children will be shown
Tracking of unpredictable moving stimuli by pigeons
Despite being observed throughout the animal kingdom, catching a moving object is a complex task and little is known about the mechanisms that underlie this behavior in non-human animals. Three experiments examined the role of prediction in capture of a moving object by pigeons. In Experiment 1, a stimulus moved in a linear trajectory, but sometimes made an unexpected 90o turn. The sudden turn had only a modest effect on capture and error location, and the analyses suggested that the birds had adjusted their tracking to the novel motion. In Experiment 2, the role of visual input during a turn was tested by inserting disappearances (either 1.5 cm or 4.5 cm) on both the straight and turn trials. The addition of the disappearance had little effect on capture success, but delayed capture location with the larger disappearance leading to greater delay. Error analyses indicated that the birds adapted to the post-turn, post-disappearance motion. Experiment 3 tested the role of visual input when the motion disappeared behind an occluder and emerged in either a straight line or at a 90o angle. The occluder produced a disruption in capture success but did not delay capture. Error analyses indicated that the birds did not adjust their tracking to the new motion on turn trials following occlusion. The combined results indicate that pigeons can anticipate the future position of a stimulus, and can adapt to sudden, unpredictable changes in motion but do so better after a disappearance than after an occlusion
Molecular Cloning and Expression Analysis of fushi tarazu Factor 1 in the Brain of Air-Breathing Catfish, Clarias gariepinus
BACKGROUND: Fushi tarazu factor 1 (FTZ-F1) encodes an orphan nuclear receptor belonging to the nuclear receptor family 5A (NR5A) which includes adrenal 4-binding protein or steroidogenic factor-1 (Ad4BP/SF-1) and liver receptor homologue 1 (LRH-1) and plays a pivotal role in the regulation of aromatases. METHODOLOGY/PRINCIPAL FINDINGS: Present study was aimed to understand the importance of FTZ-F1 in relation to brain aromatase (cyp19a1b) during development, recrudescence and after human chorionic gonadotropin (hCG) induction. Initially, we cloned FTZ-F1 from the brain of air-breathing catfish, Clarias gariepinus through degenerate primer RT-PCR and RACE. Its sequence analysis revealed high homology with other NR5A1 group members Ad4BP/SF-1 and LRH-1, and also analogous to the spatial expression pattern of the latter. In order to draw functional correlation of cyp19a1b and FTZ-F1, we analyzed the expression pattern of the latter in brain during gonadal ontogeny, which revealed early expression during gonadal differentiation. The tissue distribution both at transcript and protein levels revealed its prominent expression in brain along with liver, kidney and testis. The expression pattern of brain FTZ-F1 during reproductive cycle and after hCG induction, in vivo was analogous to that of cyp19a1b shown in our earlier study indicating its involvement in recrudescence. CONCLUSIONS/SIGNIFICANCE: Based on our previous results on cyp19a1b and the present data, it is plausible to implicate potential roles for brain FTZ-F1 in ovarian differentiation and recrudescence process probably through regulation of cyp19a1b in teleosts. Nevertheless, these interactions would require primary coordinated response from ovarian aromatase and its related transcription factors
Development of postural adjustments during reaching in typically developing infants from 4 to 18 months
Knowledge on the development of postural adjustments during infancy, in particular on the development of postural muscle coordination, is limited. This study aimed at the evaluation of the development of postural control during reaching in a supported sitting condition. Eleven typically developing infants participated in the study and were assessed at the ages of 4, 6, 10 and 18 months. We elicited reaching movements by presenting small toys at an arm’s length distance, whilst activity of multiple arm, neck and trunk muscles was recorded using surface EMG. A model-based computer algorithm was used to detect the onset of phasic muscle activity. The results indicated that postural muscle activity during reaching whilst sitting supported is highly variable. Direction-specific postural activity was inconsistently present from early age onwards and increased between 10 and 18 months without reaching a 100 % consistency. The dominant pattern of activation at all ages was the ‘complete pattern’, in which all direction-specific muscles were recruited. At 4 months, a slight preference for top-down recruitment existed, which was gradually replaced by a preference for bottom-up recruitment. We conclude that postural control during the ecological task of reaching during supported sitting between 4 and 18 months of age is primarily characterized by variation. Already from 4 months onwards, infants are—within the variation—sometimes able to select muscle recruitment strategies that are optimal to the task at hand
Recommended from our members
X-ray stereo microscopy for investigation of dynamics in soils
The presented combination of stereo imaging and elemental mapping with soft X-ray microscopy reveals the spatial arrangement of naturally aqueous colloidal systems, e.g. iron oxides in soil colloid clusters. Changes in the spatial arrangement can be induced by manipulating the sample mounted to the X-ray microscope and thus be investigated directly
On the relation between action selection and movement control in 5- to 9-month-old infants
Although 5-month-old infants select action modes that are adaptive to the size of the object (i.e., one- or two-handed reaching), it has largely remained unclear whether infants of this age control the ensuing movement to the size of the object (i.e., scaling of the aperture between hands). We examined 5-, 7-, and 9-month-olds’ reaching behaviors to gain more insight into the developmental changes occurring in the visual guidance of action mode selection and movement control, and the relationship between these processes. Infants were presented with a small set of objects (i.e., 2, 3, 7, and 8 cm) and a large set of objects (i.e., 6, 9, 12, and 15 cm). For the first set of objects, it was found that the infants more often performed two-handed reaches for the larger objects based on visual information alone (i.e., before making contact with the object), thus showing adaptive action mode selection relative to object size. Kinematical analyses of the two-handed reaches for the second set of objects revealed that inter-trial variance in aperture between the hands decreased with the approach toward the object, indicating that infants’ reaching is constrained by the object. Subsequent analysis showed that between hand aperture scaled to object size, indicating that visual control of the movement is adjusted to object size in infants as young as 5 months. Individual analyses indicated that the two processes were not dependent and followed distinct developmental trajectories. That is, adaptive selection of an action mode was not a prerequisite for appropriate aperture scaling, and vice versa. These findings are consistent with the idea of two separate and independent visual systems (Milner and Goodale in Neuropsychologia 46:774–785, 2008) during early infancy
- …