2,457 research outputs found

    The Standard Model of Quantum Measurement Theory: History and Applications

    Get PDF
    The standard model of the quantum theory of measurement is based on an interaction Hamiltonian in which the observable-to-be-measured is multiplied with some observable of a probe system. This simple Ansatz has proved extremely fruitful in the development of the foundations of quantum mechanics. While the ensuing type of models has often been argued to be rather artificial, recent advances in quantum optics have demonstrated their prinicpal and practical feasibility. A brief historical review of the standard model together with an outline of its virtues and limitations are presented as an illustration of the mutual inspiration that has always taken place between foundational and experimental research in quantum physics.Comment: 22 pages, to appear in Found. Phys. 199

    Transferring elements of a density matrix

    Full text link
    We study restrictions imposed by quantum mechanics on the process of matrix elements transfer. This problem is at the core of quantum measurements and state transfer. Given two systems \A and \B with initial density matrices λ\lambda and rr, respectively, we consider interactions that lead to transferring certain matrix elements of unknown λ\lambda into those of the final state r~{\widetilde r} of \B. We find that this process eliminates the memory on the transferred (or certain other) matrix elements from the final state of \A. If one diagonal matrix element is transferred, r~aa=λaa{\widetilde r}_{aa}=\lambda_{aa}, the memory on each non-diagonal element λab\lambda_{a\not=b} is completely eliminated from the final density operator of \A. Consider the following three quantities \Re \la_{a\not =b}, \Im \la_{a\not =b} and \la_{aa}-\la_{bb} (the real and imaginary part of a non-diagonal element and the corresponding difference between diagonal elements). Transferring one of them, e.g., \Re\tir_{a\not = b}=\Re\la_{a\not = b}, erases the memory on two others from the final state of \A. Generalization of these set-ups to a finite-accuracy transfer brings in a trade-off between the accuracy and the amount of preserved memory. This trade-off is expressed via system-independent uncertainty relations which account for local aspects of the accuracy-disturbance trade-off in quantum measurements.Comment: 9 pages, 2 table

    Sequential measurements of conjugate observables

    Full text link
    We present a unified treatment of sequential measurements of two conjugate observables. Our approach is to derive a mathematical structure theorem for all the relevant covariant instruments. As a consequence of this result, we show that every Weyl-Heisenberg covariant observable can be implemented as a sequential measurement of two conjugate observables. This method is applicable both in finite and infinite dimensional Hilbert spaces, therefore covering sequential spin component measurements as well as position-momentum sequential measurements.Comment: 25 page

    Weak vs. approximate values in quantum state determination

    Full text link
    We generalize the concept of a weak value of a quantum observable to cover arbitrary real positive operator measures. We show that the definition is operationally meaningful in the sense that it can be understood within the quantum theory of sequential measurements. We then present a detailed analysis of the recent experiment of Lundeen et al. concerning the reconstruction of the state of a photon using weak measurements. We compare their method with the reconstruction method through informationally complete phase space measurements and show that it lacks the generality of the phase space method. In particular, a completely unknown state can never be reconstructed using the method of weak measurements.Comment: 6 page

    Maximal Accuracy and Minimal Disturbance in the Arthurs-Kelly Simultaneous Measurement Process

    Get PDF
    The accuracy of the Arthurs-Kelly model of a simultaneous measurement of position and momentum is analysed using concepts developed by Braginsky and Khalili in the context of measurements of a single quantum observable. A distinction is made between the errors of retrodiction and prediction. It is shown that the distribution of measured values coincides with the initial state Husimi function when the retrodictive accuracy is maximised, and that it is related to the final state anti-Husimi function (the P representation of quantum optics) when the predictive accuracy is maximised. The disturbance of the system by the measurement is also discussed. A class of minimally disturbing measurements is characterised. It is shown that the distribution of measured values then coincides with one of the smoothed Wigner functions described by Cartwright.Comment: 12 pages, 0 figures. AMS-Latex. Earlier version replaced with final published versio

    Weak Values with Decoherence

    Full text link
    The weak value of an observable is experimentally accessible by weak measurements as theoretically analyzed by Aharonov et al. and recently experimentally demonstrated. We introduce a weak operator associated with the weak values and give a general framework of quantum operations to the W operator in parallel with the Kraus representation of the completely positive map for the density operator. The decoherence effect is also investigated in terms of the weak measurement by a shift of a probe wave function of continuous variable. As an application, we demonstrate how the geometric phase is affected by the bit flip noise.Comment: 17 pages, 3 figure

    Positive-Operator-Valued Time Observable in Quantum Mechanics

    Full text link
    We examine the longstanding problem of introducing a time observable in Quantum Mechanics; using the formalism of positive-operator-valued measures we show how to define such an observable in a natural way and we discuss some consequences.Comment: 13 pages, LaTeX, no figures. Some minor changes, expanded the bibliography (now it is bigger than the one in the published version), changed the title and the style for publication on the International Journal of Theoretical Physic

    Classical Vs Quantum Probability in Sequential Measurements

    Full text link
    We demonstrate in this paper that the probabilities for sequential measurements have features very different from those of single-time measurements. First, they cannot be modelled by a classical stochastic process. Second, they are contextual, namely they depend strongly on the specific measurement scheme through which they are determined. We construct Positive-Operator-Valued measures (POVM) that provide such probabilities. For observables with continuous spectrum, the constructed POVMs depend strongly on the resolution of the measurement device, a conclusion that persists even if we consider a quantum mechanical measurement device or the presence of an environment. We then examine the same issues in alternative interpretations of quantum theory. We first show that multi-time probabilities cannot be naturally defined in terms of a frequency operator. We next prove that local hidden variable theories cannot reproduce the predictions of quantum theory for sequential measurements, even when the degrees of freedom of the measuring apparatus are taken into account. Bohmian mechanics, however, does not fall in this category. We finally examine an alternative proposal that sequential measurements can be modelled by a process that does not satisfy the Kolmogorov axioms of probability. This removes contextuality without introducing non-locality, but implies that the empirical probabilities cannot be always defined (the event frequencies do not converge). We argue that the predictions of this hypothesis are not ruled out by existing experimental results (examining in particular the "which way" experiments); they are, however, distinguishable in principle.Comment: 56 pages, latex; revised and restructured. Version to appear in Found. Phy

    On Quantum State Observability and Measurement

    Full text link
    We consider the problem of determining the state of a quantum system given one or more readings of the expectation value of an observable. The system is assumed to be a finite dimensional quantum control system for which we can influence the dynamics by generating all the unitary evolutions in a Lie group. We investigate to what extent, by an appropriate sequence of evolutions and measurements, we can obtain information on the initial state of the system. We present a system theoretic viewpoint of this problem in that we study the {\it observability} of the system. In this context, we characterize the equivalence classes of indistinguishable states and propose algorithms for state identification

    Quantum Dot Version of Berry's Phase: Half-Integer Orbital Angular Momenta

    Full text link
    We show that Berry's geometrical (topological) phase for circular quantum dots with an odd number of electrons is equal to \pi and that eigenvalues of the orbital angular momentum run over half-integer values. The non-zero value of the Berry's phase is provided by axial symmetry and two-dimensionality of the system. Its particular value (\pi) is fixed by the Pauli exclusion principle. Our conclusions agree with the experimental results of T. Schmidt {\it at el}, \PR B {\bf 51}, 5570 (1995), which can be considered as the first experimental evidence for the existence of a new realization of Berry's phase and half-integer values of the orbital angular momentum in a system of an odd number of electrons in circular quantum dots.Comment: 4 pages, 2 figure
    corecore