9 research outputs found

    HSP90 is essential for Jak-STAT signaling in classical Hodgkin lymphoma cells

    Get PDF
    In classical Hodgkin lymphoma (cHL) chemotherapeutic regimens are associated with stagnant rates of secondary malignancies requiring the development of new therapeutic strategies. We and others have shown that permanently activated Signal Transducer and Activator of Transcription (STAT) molecules are essential for cHL cells. Recently an overexpression of heat-shock protein 90 (HSP90) in cHL cells has been shown and inhibition of HSP90 seems to affect cHL cell survival. Here we analysed the effects of HSP90 inhibition by geldanamycin derivative 17-AAG or RNA interference (RNAi) on aberrant Jak-STAT signaling in cHL cells. Treatment of cHL cell lines with 17-AAG led to reduced cell proliferation and a complete inhibition of STAT1, -3, -5 and -6 tyrosine phosphorylation probably as a result of reduced protein expression of Janus kinases (Jaks). RNAi-mediated inhibition of HSP90 showed similar effects on Jak-STAT signaling in L428 cHL cells. These results suggest a central role of HSP90 in permanently activated Jak-STAT signaling in cHL cells. Therapeutics targeting HSP90 may be a promising strategy in cHL and other cancer entities associated with deregulated Jak-STAT pathway activation

    Aberrant lymphocyte enhancer-binding factor 1 expression is characteristic for sporadic Burkitt's lymphoma

    No full text
    Burkitt's lymphoma (BL) is a highly malignant, aggressive non-Hodgkin's lymphoma derived from germinal center B cells. Recently, global gene expression profiling of patient samples led to a molecular definition of BL with lymphocyte enhancer-binding factor 1 (LEF1) as a signature gene. Herein, we report the expression of nucleic LEF1 in 15 of 18 patients with BL and the identification of LEF1 target genes. Germinal center B cells were devoid of detectable nuclear LEF1 expression, as were mantle cell lymphoma (0 of 5), marginal zone lymphoma (0 of 6), follicular lymphoma (0 of 12), and diffuse large B-cell lymphoma (1 of 31). Whole-genome gene expression profiling after transient knockdown of LEF1 in BL cell lines identified new LEF1 target genes; these LEF1 targets are enriched with genes associated with cancers. The expression of LEF1 and LEF1-regulated genes in primary BL suggests that LEF1 is not only aberrantly expressed but also transcriptionally active. This study supports a functionally important role for LEF1 and its target genes in BLs

    Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data

    No full text
    To discover new regulatory pathways in B lymphoma cells, we performed a combined analysis of experimental, clinical and global gene expression data. We identified a specific cluster of genes that was coherently expressed in primary lymphoma samples and suppressed by activation of the B cell receptor (BCR) through αIgM treatment of lymphoma cells in vitro. This gene cluster, which we called BCR.1, includes numerous cell cycle regulators. A reduced expression of BCR.1 genes after BCR activation was observed in different cell lines and also in CD10+ germinal center B cells. We found that BCR activation led to a delayed entry to and progression of mitosis and defects in metaphase. Cytogenetic changes were detected upon long-term αIgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc co-regulated genes in distinct groups of lymphoma patients was observed. Finally, we showed that the BCR.1 index discriminates activated B cell-like and germinal centre B cell-like diffuse large B cell lymphoma supporting the functional relevance of this new regulatory circuit and the power of guided clustering for biomarker discovery

    The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation.

    No full text
    The MHC class I chain-related molecule A (MICA) is a highly polymorphic ligand for the activating natural killer (NK)-cell receptor NKG2D. A single nucleotide polymorphism causes a valine to methionine exchange at position 129. Presence of a MICA-129Met allele in patients (n = 452) undergoing hematopoietic stem cell transplantation (HSCT) increased the chance of overall survival (hazard ratio [HR] = 0.77, P = 0.0445) and reduced the risk to die due to acute graft-versus-host disease (aGVHD) (odds ratio [OR] = 0.57, P = 0.0400) although homozygous carriers had an increased risk to experience this complication (OR = 1.92, P = 0.0371). Overall survival of MICA-129Val/Val genotype carriers was improved when treated with anti-thymocyte globulin (HR = 0.54, P = 0.0166). Functionally, the MICA-129Met isoform was characterized by stronger NKG2D signaling, triggering more NK-cell cytotoxicity and interferon-γ release, and faster co-stimulation of CD8(+) T cells. The MICA-129Met variant also induced a faster and stronger down-regulation of NKG2D on NK and CD8(+) T cells than the MICA-129Val isoform. The reduced cell surface expression of NKG2D in response to engagement by MICA-129Met variants appeared to reduce the severity of aGVHD.Open-Access Publikationsfonds 2015peerReviewe

    Cooperative STAT/NF-ÎşB signaling regulates lymphoma metabolic reprogramming and aberrant GOT2 expression

    Get PDF
    Metabolic rewiring of cancer cells can be driven by both extrinsic and intrinsic factors. Here the authors show that microenvironmental factors induce metabolic rewiring of B-cell lymphoma through activation of STAT3 and NF-ΚB resulting in upregulation of the aminotransferase GOT2 and glutamine addiction
    corecore