41,539 research outputs found

    Proof of the Standard Quantum Limit for Monitoring Free-Mass Position

    Full text link
    The measurement result of the moved distance for a free mass m during the time t between two position measurements cannot be predicted with uncertainty smaller than sqrt{hbar t/2m}. This is formulated as a standard quantum limit (SQL) and it has been proven to always hold for the following position measurement: a probe is set in a prescribed position before the measurement. Just after the interaction of the mass with the probe, the probe position is measured, and using this value, the measurement results of the pre-measurement and post-measurement positions are estimated.Comment: 4 pages, no figur

    Low-Temperature Expansions and Correlation Functions of the Z_3-Chiral Potts Model

    Get PDF
    Using perturbative methods we derive new results for the spectrum and correlation functions of the general Z_3-chiral Potts quantum chain in the massive low-temperature phase. Explicit calculations of the ground state energy and the first excitations in the zero momentum sector give excellent approximations and confirm the general statement that the spectrum in the low-temperature phase of general Z_n-spin quantum chains is identical to one in the high-temperature phase where the role of charge and boundary conditions are interchanged. Using a perturbative expansion of the ground state for the Z_3 model we are able to gain some insight in correlation functions. We argue that they might be oscillating and give estimates for the oscillation length as well as the correlation length.Comment: 17 pages (Plain TeX), BONN-HE-93-1

    GeMSE: A new Low-Background Facility for Meteorite and Material Screening

    Full text link
    We are currently setting up a facility for low-background gamma-ray spectrometry based on a HPGe detector. It is dedicated to material screening for the XENON and DARWIN dark matter projects as well as to the characterization of meteorites. The detector will be installed in a medium depth (∼\sim620 m.w.e.) underground laboratory in Switzerland with several layers of shielding and an active muon-veto. The GeMSE facility will be operational by fall 2015 with an expected background rate of ∼\sim250 counts/day (100-2700 keV).Comment: The following article appeared in AIP Conf. Proc. 1672, 120004 (2015) and may be found at http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4928010. The muon spectrum in Figure 4 (left) was corrected due to a bug in the code. After correction the muon flux is reduced by a factor of about

    Comment on "Control landscapes are almost always trap free: a geometric assessment"

    Full text link
    We analyze a recent claim that almost all closed, finite dimensional quantum systems have trap-free (i.e., free from local optima) landscapes (B. Russell et.al. J. Phys. A: Math. Theor. 50, 205302 (2017)). We point out several errors in the proof which compromise the authors' conclusion. Interested readers are highly encouraged to take a look at the "rebuttal" (see Ref. [1]) of this comment published by the authors of the criticized work. This "rebuttal" is a showcase of the way the erroneous and misleading statements under discussion will be wrapped up and injected in their future works, such as R. L. Kosut et.al, arXiv:1810.04362 [quant-ph] (2018).Comment: 6 pages, 1 figur

    Radiation induced zero-resistance states in GaAs/AlGaAs heterostructures: Voltage-current characteristics and intensity dependence at the resistance minima

    Full text link
    High mobility two-dimensional electron systems exhibit vanishing resistance over broad magnetic field intervals upon excitation with microwaves, with a characteristic reduction of the resistance with increasing radiation intensity at the resistance minima. Here, we report experimental results examining the voltage - current characteristics, and the resistance at the minima vs. the microwave power. The findings indicate that a non-linear V-I curve in the absence of microwave excitation becomes linearized under irradiation, unlike expectations, and they suggest a similarity between the roles of the radiation intensity and the inverse temperature.Comment: 3 color figures; publishe

    Toward a Spin- and Parity-Independent Nucleon-Nucleon Potential

    Get PDF
    A supersymmetric inversion method is applied to the singlet 1S0^1S_0 and 1P1^1P_1 neutron-proton elastic phase shifts. The resulting central potential has a one-pion-exchange (OPE) long-range behavior and a parity-independent short-range part; it fits inverted data well. Adding a regularized OPE tensor term also allows the reproduction of the triplet 3P0^3P_0, 3P1^3P_1 and 3S1^3S_1 phase shifts as well as of the deuteron binding energy. The potential is thus also spin-independent (except for the OPE part) and contains no spin-orbit term. These important simplifications of the neutron-proton interaction are shown to be possible only if the potential possesses Pauli forbidden bound states, as proposed in the Moscow nucleon-nucleon model.Comment: 9 pages, RevTeX, 5 ps figure

    Strong enhancement of spin fluctuations in the low-temperature-tetragonal phase of antiferromagnetically ordered La_{2-x-y}Eu_ySr_xCuO_4

    Full text link
    Measurements of the static magnetization, susceptibility and ESR of Gd spin probes have been performed to study the properties of antiferromagnetically ordered La_{2-x-y}Eu_ySr_xCuO_4 (x less or equal 0.02) with the low temperature tetragonal structure. According to the static magnetic measurements the CuO_2 planes are magnetically decoupled in this structural phase. The ESR study reveals strong magnetic fluctuations at the ESR frequency which are not present in the orthorhombic phase. It is argued that this drastic enhancement of the spin fluctuations is due to a considerable weakening of the interlayer exchange and a pronounced influence of hole motion on the antiferromagnetic properties of lightly hole doped La_2CuO_4. No evidence for the stripe phase formation at small hole doping is obtained in the present study.Comment: 10 pages, LaTeX, 3 EPS figures; to be published in Journal of Physics: Condensed Matte

    Wave Function Collapse in a Mesoscopic Device

    Full text link
    We determine the non-local in time and space current-current cross correlator in a mesoscopic conductor with a scattering center at the origin. Its excess part appearing at finite voltage exhibits a unique dependence on the retarded variable t1−t2−(∣x1∣−∣x2∣)/vFt_1-t_2-(|x_1|-|x_2|)/ v_{\rm\scriptscriptstyle F}, with vFv_{\rm\scriptscriptstyle F} the Fermi velocity. The non-monotonic dependence of the retardation on x1x_1 and its absence at the symmetric position x1=−x2x_1 = -x_2 is a signature of the wave function collapse, which thus becomes amenable to observation in a mesoscopic solid state device.Comment: 7 pages, 2 fugure
    • …
    corecore