128 research outputs found
Domain-adversarial neural networks to address the appearance variability of histopathology images
Preparing and scanning histopathology slides consists of several steps, each
with a multitude of parameters. The parameters can vary between pathology labs
and within the same lab over time, resulting in significant variability of the
tissue appearance that hampers the generalization of automatic image analysis
methods. Typically, this is addressed with ad-hoc approaches such as staining
normalization that aim to reduce the appearance variability. In this paper, we
propose a systematic solution based on domain-adversarial neural networks. We
hypothesize that removing the domain information from the model representation
leads to better generalization. We tested our hypothesis for the problem of
mitosis detection in breast cancer histopathology images and made a comparative
analysis with two other approaches. We show that combining color augmentation
with domain-adversarial training is a better alternative than standard
approaches to improve the generalization of deep learning methods.Comment: MICCAI 2017 Workshop on Deep Learning in Medical Image Analysi
Inferring a Third Spatial Dimension from 2D Histological Images
Histological images are obtained by transmitting light through a tissue
specimen that has been stained in order to produce contrast. This process
results in 2D images of the specimen that has a three-dimensional structure. In
this paper, we propose a method to infer how the stains are distributed in the
direction perpendicular to the surface of the slide for a given 2D image in
order to obtain a 3D representation of the tissue. This inference is achieved
by decomposition of the staining concentration maps under constraints that
ensure realistic decomposition and reconstruction of the original 2D images.
Our study shows that it is possible to generate realistic 3D images making this
method a potential tool for data augmentation when training deep learning
models.Comment: IEEE International Symposium on Biomedical Imaging (ISBI), 201
Tissue Cross-Section and Pen Marking Segmentation in Whole Slide Images
Tissue segmentation is a routine preprocessing step to reduce the
computational cost of whole slide image (WSI) analysis by excluding background
regions. Traditional image processing techniques are commonly used for tissue
segmentation, but often require manual adjustments to parameter values for
atypical cases, fail to exclude all slide and scanning artifacts from the
background, and are unable to segment adipose tissue. Pen marking artifacts in
particular can be a potential source of bias for subsequent analyses if not
removed. In addition, several applications require the separation of individual
cross-sections, which can be challenging due to tissue fragmentation and
adjacent positioning. To address these problems, we develop a convolutional
neural network for tissue and pen marking segmentation using a dataset of 200
H&E stained WSIs. For separating tissue cross-sections, we propose a novel
post-processing method based on clustering predicted centroid locations of the
cross-sections in a 2D histogram. On an independent test set, the model
achieved a mean Dice score of 0.9810.033 for tissue segmentation and a
mean Dice score of 0.9120.090 for pen marking segmentation. The mean
absolute difference between the number of annotated and separated
cross-sections was 0.0750.350. Our results demonstrate that the proposed
model can accurately segment H&E stained tissue cross-sections and pen markings
in WSIs while being robust to many common slide and scanning artifacts. The
model with trained model parameters and post-processing method are made
publicly available as a Python package called SlideSegmenter.Comment: 6 pages, 3 figure
Automatic nuclei segmentation in H&E stained breast cancer histopathology images
The introduction of fast digital slide scanners that provide whole slide images has led to a revival of interest in image analysis applications in pathology. Segmentation of cells and nuclei is an important first step towards automatic analysis of digitized microscopy images. We therefore developed an automated nuclei segmentation method that works with hematoxylin and eosin (H&E) stained breast cancer histopathology images, which represent regions of whole digital slides. The procedure can be divided into four main steps: 1) pre-processing with color unmixing and morphological operators, 2) marker-controlled watershed segmentation at multiple scales and with different markers, 3) post-processing for rejection of false regions and 4) merging of the results from multiple scales. The procedure was developed on a set of 21 breast cancer cases (subset A) and tested on a separate validation set of 18 cases (subset B). The evaluation was done in terms of both detection accuracy (sensitivity and positive predictive value) and segmentation accuracy (Dice coefficient). The mean estimated sensitivity for subset A was 0.875 (±0.092) and for subset B 0.853 (±0.077). The mean estimated positive predictive value was 0.904 (±0.075) and 0.886 (±0.069) for subsets A and B, respectively. For both subsets, the distribution of the Dice coefficients had a high peak around 0.9, with the vast majority of segmentations having values larger than 0.8. © 2013 Veta et al
Comparing computer-generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays
BACKGROUND: Tissue microarrays (TMAs) have become a valuable resource for biomarker expression in translational research. Immunohistochemical (IHC) assessment of TMAs is the principal method for analysing large numbers of patient samples, but manual IHC assessment of TMAs remains a challenging and laborious task. With advances in image analysis, computer-generated analyses of TMAs have the potential to lessen the burden of expert pathologist review. METHODS: In current commercial software computerised oestrogen receptor (ER) scoring relies on tumour localisation in the form of hand-drawn annotations. In this study, tumour localisation for ER scoring was evaluated comparing computer-generated segmentation masks with those of two specialist breast pathologists. Automatically and manually obtained segmentation masks were used to obtain IHC scores for thirty-two ER-stained invasive breast cancer TMA samples using FDA-approved IHC scoring software. RESULTS: Although pixel-level comparisons showed lower agreement between automated and manual segmentation masks (κ=0.81) than between pathologists' masks (κ=0.91), this had little impact on computed IHC scores (Allred; [Image: see text]=0.91, Quickscore; [Image: see text]=0.92). CONCLUSIONS: The proposed automated system provides consistent measurements thus ensuring standardisation, and shows promise for increasing IHC analysis of nuclear staining in TMAs from large clinical trials
A comprehensive multi-domain dataset for mitotic figure detection
The prognostic value of mitotic figures in tumor tissue is well-established for many tumor types and automating this task is of high research interest. However, especially deep learning-based methods face performance deterioration in the presence of domain shifts, which may arise from different tumor types, slide preparation and digitization devices. We introduce the MIDOG++ dataset, an extension of the MIDOG 2021 and 2022 challenge datasets. We provide region of interest images from 503 histological specimens of seven different tumor types with variable morphology with in total labels for 11,937 mitotic figures: breast carcinoma, lung carcinoma, lymphosarcoma, neuroendocrine tumor, cutaneous mast cell tumor, cutaneous melanoma, and (sub)cutaneous soft tissue sarcoma. The specimens were processed in several laboratories utilizing diverse scanners. We evaluated the extent of the domain shift by using state-of-the-art approaches, observing notable differences in single-domain training. In a leave-one-domain-out setting, generalizability improved considerably. This mitotic figure dataset is the first that incorporates a wide domain shift based on different tumor types, laboratories, whole slide image scanners, and species
Domain generalization across tumor types, laboratories, and species — Insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Recognition of mitotic figures in histologic tumor specimens is highly relevant to patient outcome assessment. This task is challenging for algorithms and human experts alike, with deterioration of algorithmic performance under shifts in image representations. Considerable covariate shifts occur when assessment is performed on different tumor types, images are acquired using different digitization devices, or specimens are produced in different laboratories. This observation motivated the inception of the 2022 challenge on MItosis Domain Generalization (MIDOG 2022). The challenge provided annotated histologic tumor images from six different domains and evaluated the algorithmic approaches for mitotic figure detection provided by nine challenge participants on ten independent domains. Ground truth for mitotic figure detection was established in two ways: a three-expert majority vote and an independent, immunohistochemistry-assisted set of labels. This work represents an overview of the challenge tasks, the algorithmic strategies employed by the participants, and potential factors contributing to their success. With an score of 0.764 for the top-performing team, we summarize that domain generalization across various tumor domains is possible with today’s deep learning-based recognition pipelines. However, we also found that domain characteristics not present in the training set (feline as new species, spindle cell shape as new morphology and a new scanner) led to small but significant decreases in performance. When assessed against the immunohistochemistry-assisted reference standard, all methods resulted in reduced recall scores, with only minor changes in the order of participants in the ranking
Corneal Pachymetry by AS-OCT after Descemet's Membrane Endothelial Keratoplasty
Corneal thickness (pachymetry) maps can be used to monitor restoration of
corneal endothelial function, for example after Descemet's membrane endothelial
keratoplasty (DMEK). Automated delineation of the corneal interfaces in
anterior segment optical coherence tomography (AS-OCT) can be challenging for
corneas that are irregularly shaped due to pathology, or as a consequence of
surgery, leading to incorrect thickness measurements. In this research, deep
learning is used to automatically delineate the corneal interfaces and measure
corneal thickness with high accuracy in post-DMEK AS-OCT B-scans. Three
different deep learning strategies were developed based on 960 B-scans from 50
patients. On an independent test set of 320 B-scans, corneal thickness could be
measured with an error of 13.98 to 15.50 micrometer for the central 9 mm range,
which is less than 3% of the average corneal thickness. The accurate thickness
measurements were used to construct detailed pachymetry maps. Moreover,
follow-up scans could be registered based on anatomical landmarks to obtain
differential pachymetry maps. These maps may enable a more comprehensive
understanding of the restoration of the endothelial function after DMEK, where
thickness often varies throughout different regions of the cornea, and
subsequently contribute to a standardized postoperative regime.Comment: Fixed typo in abstract: The development set consists of 960 B-scans
from 50 patients (instead of 68). The B-scans from the other 18 patients were
used for testing onl
Assessment of algorithms for mitosis detection in breast cancer histopathology images
The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues.
In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists
Direct Classification of Type 2 Diabetes From Retinal Fundus Images in a Population-based Sample From The Maastricht Study
Type 2 Diabetes (T2D) is a chronic metabolic disorder that can lead to
blindness and cardiovascular disease. Information about early stage T2D might
be present in retinal fundus images, but to what extent these images can be
used for a screening setting is still unknown. In this study, deep neural
networks were employed to differentiate between fundus images from individuals
with and without T2D. We investigated three methods to achieve high
classification performance, measured by the area under the receiver operating
curve (ROC-AUC). A multi-target learning approach to simultaneously output
retinal biomarkers as well as T2D works best (AUC = 0.746 [0.001]).
Furthermore, the classification performance can be improved when images with
high prediction uncertainty are referred to a specialist. We also show that the
combination of images of the left and right eye per individual can further
improve the classification performance (AUC = 0.758 [0.003]), using a
simple averaging approach. The results are promising, suggesting the
feasibility of screening for T2D from retinal fundus images.Comment: to be published in the proceeding of SPIE - Medical Imaging 2020, 6
pages, 1 figur
- …