4 research outputs found

    Near-infrared spectroscopic cathodoluminescence imaging polarimetry on silicon photonic crystal waveguides

    Get PDF
    We measure polarization- and wavelength-resolved spectra and spatial emission intensity distributions from silicon photonic crystal waveguides in the near-infrared spectral range using spectroscopic cathodoluminescence imaging polarimetry. A 30 keV electron beam, incident along the surface normal of the sample, acts as an ultrabroadband and deeply subwavelength excitation source. For photonic crystal waveguides with a broad range of design parameters, we observe a dominant emission intensity distribution that is strongly confined to the waveguide. For a period of 420 nm and a hole radius of 120 nm, this occurs at a wavelength of 1425 nm. The polarization-resolved measurements demonstrate that this feature is fully linearly polarized along the waveguide axis. Comparing the modal pattern and polarization to calculations of the electric field profiles confirms that we measure the odd TE waveguide mode of the system. This result demonstrates that the electron beam can couple to modes dominated by in-plane field components in addition to the more commonly observed modes dominated by out-of-plane field components. From the emission directionality, we conclude that we sample a leaky portion of the odd waveguide mode

    Measurement of light diffusion in ZnO nanowire forests

    No full text
    Optimum design of efficient nanowire solar cells requires better understanding of light diffusion in a nanowire array. Here we demonstrate that our recently developed ultrafast all-optical shutter can be used to directly measure the dwell time of light in a nanowire array. Our measurements on disordered ZnO nanowire arrays, “nanowire forests,” indicate that the photon mean free path and the dwell time of light can be well predicted from SEM images

    Modulation of immune responses by targeting CD169/Siglec-1 with the glycan ligand

    No full text
    A fundamental role in the plant-bacterium interaction for Gram-negative phytopathogenic bacteria is played by membrane constituents, such as proteins, lipopoly- or lipooligosaccharides (LPS, LOS) and Capsule Polysaccharides (CPS). In the frame of the understanding the molecular basis of plant bacterium interaction, the Gram-negative bacterium Agrobacterium vitis was selected in this study. It is a phytopathogenic member of the Rhizobiaceae family and it induces the crown gall disease selectively on grapevines (Vitis vinifera). A. vitis wild type strain F2/5, and its mutant in the quorum sensing gene ΔaviR, were studied. The wild type produces biosurfactants; it is considered a model to study surface motility, and it causes necrosis on grapevine roots and HR (Hypersensitive Response) on tobacco. Conversely, the mutant does not show any surface motility and does not produce any surfactant material; additionally, it induces neither necrosis on grape, nor HR on tobacco. Therefore, the two strains were analyzed to shed some light on the QS regulation of LOS structure and the consequent variation, if any, on HR response. LOS from both strains were isolated and characterized: the two LOS structures maintained several common features and differed for few others. With regards to the common patterns, firstly: the Lipid A region was not phosphorylated at C4 of the non reducing glucosamine but glycosylated by an uronic acid (GalA) unit, secondly: a third Kdo and the rare Dha (3-deoxy-lyxo-2-heptulosaric acid) moiety was present. Importantly, the third Kdo and the Dha residues were substituted by rhamnose in a not stoichiometric fashion, giving four different oligosaccharide species. The proportions among these four species, is the key difference between the LOSs from both the two bacteria. LOS from both strains and Lipid A from wild type A. vitis are now examined for their HR potential in tobacco leaves and grapevine roots
    corecore