207 research outputs found

    Nuclear DDX3 expression predicts poor outcome in colorectal and breast cancer

    Get PDF
    Purpose: DEAD box protein 3 (DDX3) is an RNA helicase with oncogenic properties that shuttles between the cytoplasm and nucleus. The majority of DDX3 is found in the cytoplasm, but a subset of tumors has distinct nuclear DDX3 localization of yet unknown biological significance. This study aimed to evaluate the significance of and mechanisms behind nuclear DDX3 expression in colorectal and breast cancer. Methods: Expression of nuclear DDX3 and the nuclear exporter chromosome region maintenance 1 (CRM1) was evaluated by immunohistochemistry in 304 colorectal and 292 breast cancer patient samples. Correlations between the subcellular localization of DDX3 and CRM1 and the difference in overall survival between patients with and without nuclear DDX3 were studied. In addition, DDX3 mutants were created for in vitro evaluation of the mechanism behind nuclear retention of DDX3. Results: DDX3 was present in the nucleus of 35% of colorectal and 48% of breast cancer patient samples and was particularly strong in the nucleolus. Nuclear DDX3 correlated with worse overall survival in both colorectal (hazard ratio [HR] 2.34, P<0.001) and breast cancer (HR 2.39, P=0.004) patients. Colorectal cancers with nuclear DDX3 expression more often had cytoplasmic expression of the nuclear exporter CRM1 (relative risk 1.67, P=0.04). In vitro analysis of DDX3 deletion mutants demonstrated that CRM1-mediated export was most dependent on the N-terminal nuclear export signal. Conclusion: Overall, we conclude that nuclear DDX3 is partially CRM1-mediated and predicts worse survival in colorectal and breast cancer patients, putting it forward as a target for therapeutic intervention with DDX3 inhibitors under development in these cancer types

    COMMD1 Promotes pVHL and O2-Independent Proteolysis of HIF-1α via HSP90/70

    Get PDF
    BACKGROUND:The Copper Metabolism MURR1 Domain containing 1 protein COMMD1 has been associated with copper homeostasis, NF-kappaB signaling, and sodium transport. Recently, we identified COMMD1 as a novel protein in HIF-1 signaling. Mouse embryos deficient for Commd1 have increased expression of hypoxia/HIF-regulated genes i.e. VEGF, PGK and Bnip3. Hypoxia-inducible factors (HIFs) are master regulators of oxygen homeostasis, which control angiogenesis, erythropoiesis, glycolysis and cell survival/proliferation under normal and pathologic conditions. Although HIF activity is mainly controlled by ubiquitination and protein degradation by the von Hippel Lindau (pVHL) tumor suppressor gene other mechanisms have recently been identified that regulate HIF signaling independently of pVHL. PRINCIPAL FINDINGS:Here we characterized the mechanism by which COMMD1 regulates HIF-1alpha protein degradation. We show that COMMD1 competes with the chaperone heat shock protein HSP90beta for binding to the NH(2)-terminal DNA-binding and heterodimerization domain of HIF-1alpha to regulate HIF-1alpha stability together with HSP70. Inhibition of HSP90 activity with 17-Allylamino-17-demethoxygeldanamycin (17-AAG) increased COMMD1-mediated HIF-1alpha degradation independent of ubiquitin and pVHL. CONCLUSION/SIGNIFICANCE:These data reveal a novel role for COMMD1 in conjunction with HSP90beta/HSP70 in the ubiquitin and O(2)-independent regulation of HIF-1alpha

    The changing microRNA landscape by color and cloudiness:a cautionary tale for nipple aspirate fluid biomarker analysis

    Get PDF
    Purpose: Investigation of nipple aspirate fluid (NAF)-based microRNAs (miRNAs) as a potential screening tool for women at increased risk of developing breast cancer is the scope of our research. While aiming to identify discriminating NAF-miRNAs between women with different mammographic densities, we were confronted with an unexpected confounder: NAF sample appearance. Here we report and alert for the impact of NAF color and cloudiness on miRNA assessment. Methods: Seven classes of NAF colors coupled with cloudiness appearance were established. Using 173 NAF samples from 154 healthy women (19 samples were bilaterally collected), the expression of 14 target and 2 candidate endogenous control (EC) miRNAs was investigated using Taqman Advanced miRNA assays to identify significant differential expression patterns between color-cloudiness classes. Inter- and intra-individual variation of miRNA expression was analyzed using the coefficient of variation (CV). Results: We found that between the seven NAF classes, fold change miRNA expression differences ranged between 2.4 and 19.6 depending on the interrogated miRNA. Clear NAF samples exhibited higher miRNA expression levels compared to cloudy NAF samples with fold change differences ranging between 1.1 and 6.2. Inter-individual and intra-individual miRNA expression was fairly stable (CV &lt; 15 %), but nevertheless impacted by NAF sample appearance. Within NAF classes, inter-individual variation was largest for green samples (CV 6-15 %) and smallest for bloody samples (CV 2-6 %). Conclusions: Our data indicate that NAF color and cloudiness influence miRNA expression and should, therefore, be systematically registered using an objective color classification system. Given that sample appearance is an inherent feature of NAF, these variables should be statistically controlled for in multivariate data analyses. This cautionary note and recommendations could be of value beyond the field of NAF-miRNAs, given that variability in sample color and cloudiness is likewise observed in liquid biopsies such as urine, cerebrospinal fluid and sputum, and could thereby influence the levels of miRNAs and other biomarkers.</p

    Doxorubicin-induced skeletal muscle atrophy:Elucidating the underlying molecular pathways

    Get PDF
    AIM: Loss of skeletal muscle mass is a common clinical finding in cancer patients. The purpose of this meta-analysis and systematic review was to quantify the effect of doxorubicin on skeletal muscle and report on the proposed molecular pathways possibly leading to doxorubicin-induced muscle atrophy in both human and animal models. METHODS: A systematic search of the literature was conducted in PubMed, EMBASE, Web of Science and CENTRAL databases. The internal validity of included studies was assessed using SYRCLE's risk of bias tool. RESULTS: Twenty eligible articles were identified. No human studies were identified as being eligible for inclusion. Doxorubicin significantly reduced skeletal muscle weight (ie EDL, TA, gastrocnemius and soleus) by 14% (95% CI: 9.9; 19.3) and muscle fibre cross-sectional area by 17% (95% CI: 9.0; 26.0) when compared to vehicle controls. Parallel to negative changes in muscle mass, muscle strength was even more decreased in response to doxorubicin administration. This review suggests that mitochondrial dysfunction plays a central role in doxorubicin-induced skeletal muscle atrophy. The increased production of ROS plays a key role within this process. Furthermore, doxorubicin activated all major proteolytic systems (ie calpains, the ubiquitin-proteasome pathway and autophagy) in the skeletal muscle. Although each of these proteolytic pathways contributes to doxorubicin-induced muscle atrophy, the activation of the ubiquitin-proteasome pathway is hypothesized to play a key role. Finally, a limited number of studies found that doxorubicin decreases protein synthesis by a disruption in the insulin signalling pathway. CONCLUSION: The results of the meta-analysis show that doxorubicin induces skeletal muscle atrophy in preclinical models. This effect may be explained by various interacting molecular pathways. Results from preclinical studies provide a robust setting to investigate a possible dose-response, separate the effects of doxorubicin from tumour-induced atrophy and to examine underlying molecular pathways. More research is needed to confirm the proposed signalling pathways in humans, paving the way for potential therapeutic approaches

    Physical Activity during Cancer Treatment (PACT) Study: design of a randomised clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fatigue is a major problem of cancer patients. Thirty percent of cancer survivors report serious fatigue three years after finishing treatment. There is evidence that physical exercise during cancer treatment reduces fatigue. This may also lead to an improvement of quality of life. Such findings may result in a decrease of healthcare related expenditures and societal costs due to sick leave. However, no studies are known that investigated these hypotheses. Therefore, the primary aim of our study is to assess the effect of exercise during cancer treatment on reducing complaints of fatigue and on reducing health service utilisation and sick leave.</p> <p>Methods/Design</p> <p>The Physical Activity during Cancer Treatment study is a multicentre randomised controlled trial in 150 breast and 150 colon cancer patients undergoing cancer treatment. Participants will be randomised to an exercise or a control group. In addition to the usual care, the exercise group will participate in an 18-week supervised group exercise programme. The control group will be asked to maintain their habitual physical activity pattern. Study endpoints will be assessed after 18 weeks (short term) and after 9 months (long term). Validated questionnaires will be used. Primary outcome: fatigue (Multidimensional Fatigue Inventory and Fatigue Quality List) and cost-effectiveness, health service utilisation and sick leave. Secondary outcome: health related quality of life (European Organisation Research and Treatment of Cancer-Quality of Life questionnaire-C30, Short Form 36 healthy survey), impact on functioning and autonomy (Impact on functioning and autonomy questionnaire), anxiety and depression (Hospital Anxiety and Depression Scale), physical fitness (aerobic peak capacity, muscle strength), body composition and cognitive-behavioural aspects. To register health service utilisation and sick leave, participants will keep diaries including the EuroQuol-5D. Physical activity level will be measured using the Short Questionnaire to Assess Health-Enhancing Physical Activity and will be monitored with an exercise log and a pedometer.</p> <p>Discussion</p> <p>This study investigates the (cost)-effectiveness of exercise during adjuvant treatment of patients with breast or colon cancer. If early physical exercise proves to be (cost) effective, establishing standardised physical exercise programmes during cancer treatment will be planned.</p> <p>Trial registration</p> <p>Current Controlled trials ISRCTN43801571, Dutch Trial Register NTR2138</p

    p120-catenin prevents multinucleation through control of MKLP1-dependent RhoA activity during cytokinesis.

    Get PDF
    Spatiotemporal activation of RhoA and actomyosin contraction underpins cellular adhesion and division. Loss of cell-cell adhesion and chromosomal instability are cardinal events that drive tumour progression. Here, we show that p120-catenin (p120) not only controls cell-cell adhesion, but also acts as a critical regulator of cytokinesis. We find that p120 regulates actomyosin contractility through concomitant binding to RhoA and the centralspindlin component MKLP1, independent of cadherin association. In anaphase, p120 is enriched at the cleavage furrow where it binds MKLP1 to spatially control RhoA GTPase cycling. Binding of p120 to MKLP1 during cytokinesis depends on the N-terminal coiled-coil domain of p120 isoform 1A. Importantly, clinical data show that loss of p120 expression is a common event in breast cancer that strongly correlates with multinucleation and adverse patient survival. In summary, our study identifies p120 loss as a driver event of chromosomal instability in cancer
    • …
    corecore