135 research outputs found
Predictive factors for severe toxicity of sunitinib in unselected patients with advanced renal cell cancer
Sunitinib has been registered for the treatment of advanced renal cell cancer (RCC). As patient inclusion was highly selective in previous studies, experience with sunitinib in general oncological practice remains to be reported. We determined the efficacy and safety of sunitinib in patients with advanced RCC included in an expanded access programme. ECOG performance status >1, histology other than clear cell and presence of brain metastases were no exclusion criteria. Eighty-two patients were treated: 23% reached a partial response, 50% had stable disease, 20% progressed and six patients were not evaluable. Median progression-free survival (PFS) was 9 months and median overall survival (OS) was 15 months. Importantly, 47 patients (57%) needed a dose reduction, 35 (43%) because of treatment-related adverse events, 10 (12%) because of continuous dosing, and two because of both. Stomatitis, fatigue, hand–foot syndrome and a combination of grade 1–2 adverse events were the most frequent reasons for dose reduction. In 40 patients (49%), there was severe toxicity, defined as dose reduction or permanent discontinuation, which was highly correlated with low body surface area, high age and female gender. On the basis of age and gender, a model was developed that could predict the probability of severe toxicity
Determination of an optimal response cut-off able to predict progression-free survival in patients with well-differentiated advanced pancreatic neuroendocrine tumours treated with sunitinib: an alternative to the current RECIST-defined response.
BACKGROUND: Sunitinib prolongs progression-free survival (PFS) in patients with advanced pancreatic neuroendocrine tumours (pNET). Response Evaluation Criteria in Solid Tumors (RECIST)-defined partial responses (PR; classically defined as ⩾30% size decrease from baseline) are infrequent.
METHODS: Individual data of pNET patients from the phase II [NCT00056693] and pivotal phase III [NCT00428597] trials of sunitinib were analysed in this investigator-initiated, post hoc study. The primary objective was to determine the optimal RECIST (v.1.0) response cut-off value to identify patients who were progression-free at 11 months (median PFS in phase III trial); and the most informative time-point (highest area under the curve (AUC) by receiver operating characteristic (ROC) analysis and logistic regression) for prediction of benefit (PFS) from sunitinib.
RESULTS: Data for 237 patients (85 placebo; 152 sunitinib (n=66.50 mg \u274-weeks on/2-weeks off\u27 schedule; n=86 \u2737.5 mg continuous daily dosing (CDD)\u27)) and 788 scans were analysed. The median PFS for sunitinib and placebo were 9.3 months (95% CI 7.6-12.2) and 5.4 months (95% CI 3.5-6.01), respectively (hazard ratio (HR) 0.43 (95% CI 0.29-0.62); P
CONCLUSIONS: A 10% reduction within marker lesions identifies pNET patients benefiting from sunitinib treatment with implications for maintenance of dose intensity and future trial design
Phase I-II study of everolimus and low-dose oral cyclophosphamide in patients with metastatic renal cell cancer
<p>Abstract</p> <p>Background</p> <p>For patients with metastatic renal cell cancer (mRCC) who progressed on vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor therapy, the orally administered mammalian target of rapamycin (mTOR) inhibitor everolimus has been shown to prolong progression free survival. Intriguingly, inhibition of mTOR also promotes expansion of immunosuppressive regulatory T cells (Tregs) that can inhibit anti-tumor immune responses in a clinically relevant way in various tumor types including RCC. This study intends to investigate whether the antitumor efficacy of everolimus can be increased by preventing the detrimental everolimus induced expansion of Tregs using a metronomic schedule of cyclophosphamide.</p> <p>Methods/design</p> <p>This phase I-II trial is a national multi-center study of different doses and schedules of low-dose oral cyclophosphamide in combination with a fixed dose of everolimus in patients with mRCC not amenable to or progressive after a VEGF-receptor tyrosine kinase inhibitor containing treatment regimen. In the phase I part of the study the optimal Treg-depleting dose and schedule of metronomic oral cyclophosphamide when given in combination with everolimus will be determined. In the phase II part of the study we will evaluate whether the percentage of patients progression free at 4 months of everolimus treatment can be increased from 50% to 70% by adding metronomic cyclophosphamide (in the dose and schedule determined in the phase I part). In addition to efficacy, we will perform extensive immune monitoring with a focus on the number, phenotype and function of Tregs, evaluate the safety and feasibility of the combination of everolimus and cyclophosphamide, perform monitoring of selected angiogenesis parameters and analyze everolimus and cyclophosphamide drug levels.</p> <p>Discussion</p> <p>This phase I-II study is designed to determine whether metronomic cyclophosphamide can be used to counter the mTOR inhibitor everolimus induced Treg expansion in patients with metastatic renal cell carcinoma and increase the antitumor efficacy of everolimus.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier <a href="http://www.clinicaltrials.gov/ct2/show/NCT01462214">NCT01462214</a>, EudraCT number 2010-024515-13, Netherlands Trial Register number <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2040">NTR3085</a>.</p
Management of axitinib (AG-013736)-induced fatigue and thyroid dysfunction, and predictive biomarkers of axitinib exposure: results from phase I studies in Japanese patients
Background Axitinib is an oral, potent and selective inhibitor of vascular endothelial growth factor receptors (VEGFRs) 1, 2 and 3. We report on data obtained from 18 Japanese patients with advanced solid tumors in two phase I trials that evaluated the safety, pharmacokinetics and antitumor activity of axitinib and also examined potential biomarkers. Methods Six patients received a single 5-mg dose of axitinib followed by 5 mg twice daily (BID), and an additional six patients received axitinib 5 mg BID only. Another six patients received axitinib at 5-mg, 7-mg and 10-mg single doses followed by 5 mg BID. Results Plasma pharmacokinetics following single doses of axitinib was generally linear. Common treatment-related adverse events were fatigue (83%), anorexia (72%), diarrhea (67%), hand–foot syndrome (67%) and hypertension (61%). Sixteen patients (89%) experienced thyroid-stimulating hormone (TSH) elevation. Grade 3/4 toxicities included hypertension (33%) and fatigue (28%). No grade 3/4 fatigue occurred in patients who started thyroid hormone replacement therapy when TSH was elevated. Thyroglobulin elevation was observed in all patients who continued treatment with axitinib for ≥3 months. Abnormal TSH correlated with exposure to axitinib (r = 0.72). Decrease in soluble (s) VEGFR-2 levels significantly correlated with exposure to axitinib (r = –0.94). Axitinib showed antitumor activity across multiple tumor types. Conclusions Axitinib-related thyroid dysfunction could be due to a direct effect on the thyroid gland. Grade 3/4 fatigue and hypothyroidism appear to be controllable with use of thyroid hormone replacement therapy. sVEGFR-2 and TSH may act as biomarkers of axitinib plasma exposure
Sunitinib and other targeted therapies for renal cell carcinoma
Targeted therapy has radically altered the way metastatic renal cancer is treated. Six drugs are now licensed in this setting, with several other agents under evaluation. Sunitinib is currently the most widely used in the first line setting with impressive efficacy and an established toxicity profile. However, as further randomised studies report and as newer drugs become available this may change. In this review, we address our current understanding of targeted therapy in renal cancer. We also discuss areas in which our knowledge is incomplete, including the identification of correlative biomarkers and mechanisms of drug resistance. Finally, we will describe the major areas of clinical research that will report over the next few years
- …