3 research outputs found

    Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021

    Get PDF
    Imaging markers of cerebral small vessel disease provide valuable information on brain health, but their manual assessment is time-consuming and hampered by substantial intra- and interrater variability. Automated rating may benefit biomedical research, as well as clinical assessment, but diagnostic reliability of existing algorithms is unknown. Here, we present the results of the VAscular Lesions DetectiOn and Segmentation (Where is VALDO?) challenge that was run as a satellite event at the international conference on Medical Image Computing and Computer Aided Intervention (MICCAI) 2021. This challenge aimed to promote the development of methods for automated detection and segmentation of small and sparse imaging markers of cerebral small vessel disease, namely enlarged perivascular spaces (EPVS) (Task 1), cerebral microbleeds (Task 2) and lacunes of presumed vascular origin (Task 3) while leveraging weak and noisy labels. Overall, 12 teams participated in the challenge proposing solutions for one or more tasks (4 for Task 1-EPVS, 9 for Task 2-Microbleeds and 6 for Task 3-Lacunes). Multi-cohort data was used in both training and evaluation. Results showed a large variability in performance both across teams and across tasks, with promising results notably for Task 1-EPVS and Task 2-Microbleeds and not practically useful results yet for Task 3-Lacunes. It also highlighted the performance inconsistency across cases that may deter use at an individual level, while still proving useful at a population level

    Eigentumors for prediction of treatment failure in patients with early-stage breast cancer using dynamic contrast-enhanced MRI : a feasibility study

    No full text
    We present a radiomics model to discriminate between patients at low risk and those at high risk of treatment failure at long-term follow-up based on eigentumors: principal components computed from volumes encompassing tumors in washin and washout images of pre-treatment dynamic contrast-enhanced (DCE-) MR images. Eigentumors were computed from the images of 563 patients from the MARGINS study. Subsequently, a least absolute shrinkage selection operator (LASSO) selected candidates from the components that contained 90% of the variance of the data. The model for prediction of survival after treatment (median follow-up time 86 months) was based on logistic regression. Receiver operating characteristic (ROC) analysis was applied and area-under-the-curve (AUC) values were computed as measures of training and cross-validated performances. The discriminating potential of the model was confirmed using Kaplan-Meier survival curves and log-rank tests.
 
 From the 322 principal components that explained 90% of the variance of the data, the LASSO selected 28 components. The ROC curves of the model yielded AUC values of 0.88, 0.77 and 0.73, for the training, leave-one-out cross-validated and bootstrapped performances, respectively. The bootstrapped Kaplan-Meier survival curves confirmed significant separation for all tumors (<i>P</i> < 0.0001). Survival analysis on immunohistochemical subgroups shows significant separation for the estrogen-receptor (ER) subtype tumors (<i>P</i> < 0.0001) and the triple-negative (TN) subtype tumors (<i>P</i>=0.0039), but not for tumors of the HER2 subtype (<i>P</i>=0.41). The results of this retrospective study show the potential of early-stage pre-treatment eigentumors for use in prediction of treatment failure of breast cancer.&#13

    Eigentumors for prediction of treatment failure in patients with early-stage breast cancer using dynamic contrast-enhanced MRI : a feasibility study

    No full text
    We present a radiomics model to discriminate between patients at low risk and those at high risk of treatment failure at long-term follow-up based on eigentumors: principal components computed from volumes encompassing tumors in washin and washout images of pre-treatment dynamic contrast-enhanced (DCE-) MR images. Eigentumors were computed from the images of 563 patients from the MARGINS study. Subsequently, a least absolute shrinkage selection operator (LASSO) selected candidates from the components that contained 90% of the variance of the data. The model for prediction of survival after treatment (median follow-up time 86 months) was based on logistic regression. Receiver operating characteristic (ROC) analysis was applied and area-under-the-curve (AUC) values were computed as measures of training and cross-validated performances. The discriminating potential of the model was confirmed using Kaplan-Meier survival curves and log-rank tests.
 
 From the 322 principal components that explained 90% of the variance of the data, the LASSO selected 28 components. The ROC curves of the model yielded AUC values of 0.88, 0.77 and 0.73, for the training, leave-one-out cross-validated and bootstrapped performances, respectively. The bootstrapped Kaplan-Meier survival curves confirmed significant separation for all tumors (<i>P</i> < 0.0001). Survival analysis on immunohistochemical subgroups shows significant separation for the estrogen-receptor (ER) subtype tumors (<i>P</i> < 0.0001) and the triple-negative (TN) subtype tumors (<i>P</i>=0.0039), but not for tumors of the HER2 subtype (<i>P</i>=0.41). The results of this retrospective study show the potential of early-stage pre-treatment eigentumors for use in prediction of treatment failure of breast cancer.&#13
    corecore