4,531 research outputs found
Introducing Preference Heterogeneity into a Monocentric Urban Model: an Agent-Based Land Market Model
This paper presents an agent-based urban land market model. We first replace the centralized price determination mechanism of the monocentric urban market model with a series of bilateral trades distributed in space and time. We then run the model for agents with heterogeneous preferences for location. Model output is analyzed using a series of macro-scale economic and landscape pattern measures, including land rent gradients estimated using simple regression. We demonstrate that heterogeneity in preference for proximity alone is sufficient to generate urban expansion and that information on agent heterogeneity is needed to fully explain land rent variation over space. Our agent-based land market model serves as computational laboratory that may improve our understanding of the processes generating patterns observed in real-world data
OH-selected AGB and post-AGB objects I.Infrared and maser properties
Using 766 compact objects from a survey of the galactic Plane in the 1612-MHz
OH line, new light is cast on the infrared properties of evolved stars on the
TP-AGB and beyond. The usual mid-infrared selection criteria, based on IRAS
colours, largely fail to distinguish early post-AGB stages. A two-colour
diagram from narrower-band MSX flux densities, with bimodal distributions,
provides a better tool to do the latter. Four mutually consistent selection
criteria for OH-masing red PPNe are given, as well as two for early post-AGB
masers and one for all post--AGB masers, including the earliest ones. All these
criteria miss a group of blue, high-outflow post-AGB sources with 60-mum
excess; these will be discussed in detail in Paper II. The majority of post-AGB
sources show regular double-peaked spectra in the OH 1612-MHz line, with fairly
low outflow velocities, although the fractions of single peaks and irregular
spectra may vary with age and mass. The OH flux density shows a fairly regular
relation with the stellar flux and the envelope optical depth, with the maser
efficiency increasing with IRAS colour R21. The OH flux density is linearly
correlated with the 60-mum flux density.Comment: 16 pages, LaTex, 22 figures, AJ (accepted
- …