316 research outputs found

    TIPS for Scaling up Research in Upper Limb Prosthetics

    Get PDF
    Many research initiatives have been employed in upper limb prosthetics (ULP) in the last few decades. The body of knowledge is growing and inspired by new and interesting technology that has been brought to the market to facilitate functioning of people with upper limb defects. However, a lot of research initiatives do not reach the target population. Several reasons can be identified as to why research does not move beyond the lab, such as lack of research quality, disappointing results of new initiatives, lack of funding to further develop promising initiatives, and poor implementation or dissemination of results. In this paper, we will appraise the current status of the research in ULP. Furthermore, we will try to provide food for thought to scale up research in ULP, focusing on (1) translation of research findings, (2) the quality of innovations in the light of evidence-based medicine and evidence-based practice, (3) patient involvement, and (4) spreading of research findings by focusing on implementation and dissemination of results and collaboration in a national and international perspective. With this paper, we aim to open the discussion on scaling up research in the community of professionals working in the field of ULP

    Prosthesis Prescription Protocol of the Arm (PPP-Arm):The implementation of a national prosthesis prescription protocol

    Get PDF
    Background and aim: In order to create more uniformity in the prescription of upper limb prostheses by Dutch rehabilitation teams, the development and implementation of a Prosthesis Prescription Protocol of the upper limb (PPP-Arm) was initiated. The aim was to create a national digital protocol to structure, underpin, and evaluate the prescription of upper limb prostheses for clients with acquired or congenital arm defects. Technique: Prosthesis Prescription Protocol of the Arm (PPP-Arm) was developed on the basis of the International Classification of Functioning and consisted of several layers. All stakeholders (rehabilitation teams, orthopedic workshops, patients, and insurance companies) were involved in development and implementation. A national project coordinator and knowledge brokers in each team were essential for the project. Discussion: PPP-Arm was successfully developed and implemented in nine Dutch rehabilitation teams. The protocol improved team collaboration, structure, and completeness of prosthesis prescriptions and treatment uniformity and might be interesting for other countries as well

    Changes in performance over time while learning to use a myoelectric prosthesis

    Get PDF
    BACKGROUND: Training increases the functional use of an upper limb prosthesis, but little is known about how people learn to use their prosthesis. The aim of this study was to describe the changes in performance with an upper limb myoelectric prosthesis during practice. The results provide a basis to develop an evidence-based training program. METHODS: Thirty-one able-bodied participants took part in an experiment as well as thirty-one age- and gender-matched controls. Participants in the experimental condition, randomly assigned to one of four groups, practiced with a myoelectric simulator for five sessions in a two-weeks period. Group 1 practiced direct grasping, Group 2 practiced indirect grasping, Group 3 practiced fixating, and Group 4 practiced a combination of all three tasks. The Southampton Hand Assessment Procedure (SHAP) was assessed in a pretest, posttest, and two retention tests. Participants in the control condition performed SHAP two times, two weeks apart with no practice in between. Compressible objects were used in the grasping tasks. Changes in end-point kinematics, joint angles, and grip force control, the latter measured by magnitude of object compression, were examined. RESULTS: The experimental groups improved more on SHAP than the control group. Interestingly, the fixation group improved comparable to the other training groups on the SHAP. Improvement in global position of the prosthesis leveled off after three practice sessions, whereas learning to control grip force required more time. The indirect grasping group had the smallest object compression in the beginning and this did not change over time, whereas the direct grasping and the combination group had a decrease in compression over time. Moreover, the indirect grasping group had the smallest grasping time that did not vary over object rigidity, while for the other two groups the grasping time decreased with an increase in object rigidity. CONCLUSIONS: A training program should spend more time on learning fine control aspects of the prosthetic hand during rehabilitation. Moreover, training should start with the indirect grasping task that has the best performance, which is probably due to the higher amount of useful information available from the sound hand

    Transfer of mode switching performance:from training to upper-limb prosthesis use

    Get PDF
    BACKGROUND: Current myoelectric prostheses are multi-articulated and offer multiple modes. Switching between modes is often done through pre-defined myosignals, so-called triggers, of which the training hardly is studied. We evaluated if switching skills trained without using a prosthesis transfer to actual prosthesis use and whether the available feedback during training influences this transfer. Furthermore we examined which clinically relevant performance measures and which myosignal features were adapted during training. METHODS: Two experimental groups and one control group participated in a five day pre-test-post-test design study. Both experimental groups used their myosignals to perform a task. One group performed a serious game without seeing their myosignals, the second group was presented their myosignal on a screen. The control group played the serious game using the touchpad of the laptop. Each training session lasted 15 min. The pre- and post-test were identical for all groups and consisted of performing a task with an actual prosthesis, where switches had to be produced to change grip mode to relocate clothespins. Both clinically relevant performance measures and myosignal features were analysed. RESULTS: 10 participants trained using the serious game, 10 participants trained with the visual myosignal and 8 the control task. All participants were unimpaired. Both experimental groups showed significant transfer of skill from training to prosthesis use, the control group did not. The degree of transfer did not differ between the two training groups. Clinically relevant measure 'accuracy' and feature of the myosignals 'variation in phasing' changed during training. CONCLUSIONS: Training switching skills appeared to be successful. The skills trained in the game transferred to performance in a functional task. Learning switching skills is independent of the type of feedback used during training. Outcome measures hardly changed during training and further research is needed to explain this. It should be noted that five training sessions did not result in a level of performance needed for actual prosthesis use. Trial registration The study was approved by the local ethics committee (ECB 2014.02.28_1) and was included in the Dutch trial registry (NTR5876)

    HoMEcare aRm rehabiLItatioN (MERLIN):preliminary evidence of long term effects of telerehabilitation using an unactuated training device on upper limb function after stroke

    Get PDF
    BACKGROUND: While short term effects on upper limb function of stroke patients after training with robotic devices have been studied extensively, long term effects are often not addressed. HoMEcare aRm rehabiLItatioN (MERLIN) is a combination of an unactuated training device using serious games and a telerehabilitation platform in the patient’s home situation. Short term effects showed that upper limb function improved after training with MERLIN. The aim was to determine long term effects on upper limb function and quality of life. METHODS: Six months after cessation of the 6 week MERLIN training program, the upper limb function and quality of life of 11 chronic stroke patients were assessed. Upper limb function was measured using the Wolf Motor Function Test (WMFT), Action Research Arm Test (ARAT) and Fugl-Meyer Assessment-Upper Extremity (FMA-UE). EuroQoL-5D (EQ-5D) was used to measure quality of life. RESULTS: The WMFT, ARAT and EQ-5D did not show significant differences 6 months after the training period compared to directly after training. At 6 months follow-up, FMA-UE results were significantly better than at baseline. Time plots showed a decreasing trend in all tests. CONCLUSION: Training effects were still present at 6 months follow-up, since arm function seemed similar to directly after training and FMA-UE results were better than at baseline. However, because of the decreasing trend shown in all tests, it is questionable if improvements will be maintained longer than 6 months. Due to the sample size and study design, results should be interpreted with caution. Trial registration This study is registered at the Netherlands Trial Register (NL7535). Registered 18-02-2019, https://www.trialregister.nl/trial/753

    User-relevant factors determining prosthesis choice in persons with major unilateral upper limb defects:A meta-synthesis of qualitative literature and focus group results

    Get PDF
    Objective Considering the high rejection rates of upper limb prostheses, it is important to determine which prosthesis fits best the needs of each user. The introduction of the multi-grip prostheses hands (MHP), which have functional advantages but are also more expensive, has made prosthesis selection even harder. Therefore, we aimed to identify user opinions on factors determining prosthesis choice of persons with major unilateral upper limb defects in order to facilitate a more optimal fit between user and prosthesis. Methods A qualitative meta-synthesis using a 'best-fit framework' approach was performed by searching five databases (PROSPERO registration number: CRD42019126973). Studies were considered eligible if they contained qualitative content about adults with major unilateral upper limb defects experienced in using commercially available upper limb prostheses and focused on upper limb prosthesis users' opinions. Results of the meta-synthesis were validated with end-users (n = 11) in a focus group. Results Out of 6247 articles, 19 studies were included. An overview of six main themes ('physical', 'activities and participation', 'mental', 'social', 'rehabilitation, cost and prosthetist services' and 'prosthesis related factors') containing 86 subthemes that could affect prosthesis choice was created. Of these subthemes, 19 were added by the focus group. Important subthemes were 'work/school', 'functionality' and 'reactions from public'. Opinions of MHP-users were scarce. MHPs were experienced as more dexterous and life-like but also as less robust and difficult to control. Conclusion The huge number of factors that could determine upper limb prosthesis choice explains that preferences vary greatly. The created overview can be of great value to identify preferences and facilitate user-involvement in the selection process. Ultimately, this may contribute to a more successful match between user and prosthesis, resulting in a decrease of abandonment and increase of cost-effectiveness

    The Anatomy of Action Systems:Task Differentiation When Learning an EMG Controlled Game

    Get PDF
    This study aims to determine to what extent the task for an action system in its initial development relies on functional and anatomical components. Fifty-two able-bodied participants were randomly assigned to one of three experimental groups or to a control group. As a pre- and post-test all groups performed a computer game with the same goal and using the same musculature. One experimental group also trained to perform this test, while the other two experimental groups learned to perform a game that differed either in its goal or in the musculature used. The observed change in accuracy indicated that retaining the goal of the task or the musculature used equally increased transfer performance relative to controls. Conversely, changing either the goal or the musculature equally decreased transfer relative to training the test. These results suggest that in the initial development of an action system, the task to which the system pertains is not specified solely by either the goal of the task or the anatomical structures involved. It is suggested that functional specificity and anatomical dependence might equally be outcomes of continuously differentiating activity

    Performance among different types of myocontrolled tasks is not related

    Get PDF
    Studies on myocontrolled assistive technology (AT), such as myoelectric prostheses, as well as rehabilitation practice using myoelectric controlled interfaces, commonly assume the existence of a general myocontrol skill. This is the skill to control myosignals in such a way that they are employable in multiple tasks. If this skill exists, training any myocontrolled task using a certain set of muscles would improve the use of myocontrolled AT when the AT is controlled using these muscles. We examined whether a general myocontrol skill exists in myocontrolled tasks with and without a prosthesis. Unimpaired, right-handed adults used the sEMG of wrist flexors and extensors to perform several tasks in two experiments. In Experiment 1, twelve participants trained a myoelectric prosthesis-simulator task and a myocontrolled serious game for five consecutive days. Performance was compared between tasks and over the course of the training period. In Experiment 2, thirty-one participants performed five myocontrolled tasks consisting of two serious games, two prosthesis-simulator tasks and one digital signal matching task. All tasks were based on tasks currently used in clinical practice or research settings. Kendall rank correlation coefficients were computed to analyze correlations between the performance on different tasks. In Experiment 1 performance on the tasks showed no correlation for multiple outcome measures. Rankings within tasks did not change over the training period. In Experiment 2 performance did not correlate between any of the tasks. Since performance between different tasks did not correlate, results suggest that a general myocontrol skill does not exist and that each myocontrolled task requires a specific skill. Generalization of those findings to amputees using AT should be done with caution since in both experiments unimpaired participants were included. Moreover, training duration in Experiment 2 was short. Our findings indicate that training and assessment methods for myocontrolled AT use should focus on tasks frequently performed in daily life by the individual using the AT instead of merely focusing on training myosignals
    • …
    corecore