9 research outputs found

    Improving mobility performance in wheelchair basketball

    Get PDF
    Objective: This study aimed to investigate which characteristics of athlete, wheelchair and athlete-wheelchair interface are the best predictors of wheelchair basketball mobility performance. Design: A total of 60 experienced wheelchair basketball players performed a wheelchair mobility performance test to assess their mobility performance. To determine which variables were the best predictors of mobility performance, forward stepwise linear regression analyses were performed on a set of 33 characteristics, including 10 athlete, 19 wheelchair, and 4 athlete-wheelchair interface characteristics. Results: A total of 8 of the characteristics turned out to be significant predictors of wheelchair basketball mobility performance. Classification, experience, maximal isometric force, wheel axis height, and hand rim diameter-which both are interchangeable with each other and wheel diameter-camber angle, and the vertical distance between shoulder and rear wheel axis-which was interchangeable with seat height-were positively associated with mobility performance. The vertical distance between the front seat and the footrest was negatively associated with mobility performance. Conclusion: With this insight, coaches and biomechanical specialists are provided with statistical findings to determine which characteristics they could focus on best to improve mobility performance. Six out of 8 predictors are modifiable and can be optimized to improve mobility performance. These adjustments could be carried out both in training (maximal isometric force) and in wheelchair configurations (eg, camber angle)

    Six inertial measurement unit-based components describe wheelchair mobility performance during wheelchair tennis matches

    Get PDF
    The aim of this explorative study was to determine the key inertial measurement unit-based wheelchair mobility performance components during a wheelchair tennis match. A total of 64 wheelchair tennis matches were played by 15 wheelchair tennis players (6 women, 5 men, 4 juniors). All individual tennis wheelchairs were instrumented with inertial measurement units, two on the axes of the wheels and one on the frame. A total of 48 potentially relevant wheelchair tennis outcome variables were initially extracted from the sensor signals, based on previous wheelchair sports research and the input of wheelchair tennis experts (coaches, embedded scientists). A principal component analysis was used to reduce this set of variables to the most relevant outcomes for wheelchair tennis mobility. Results showed that wheelchair mobility performance in wheelchair tennis can be described by six components: rotations to racket side in (1) curves and (2) turns; (3) linear accelerations; (4) rotations to non-racket side in (4) turns and (5) curves; and finally, (6) linear velocities. One or two outcome variables per component were selected to allow an easier interpretation of results. These key outcome variables can be used to adequately describe the wheelchair mobility performance aspect of wheelchair tennis during a wheelchair tennis match and can be monitored during training.</p

    The future of classification in wheelchair sports: Can data science and technological advancement offer an alternative point of view?

    No full text
    PURPOSE: Classification is a defining factor for competition in wheelchair sports, but it is a delicate and time-consuming process with often questionable validity.1 New inertial sensor based measurement methods applied in match play and field tests, allow for more precise and objective estimates of the impairment effect on wheelchair mobility performance. It was evaluated if these measures could offer an alternative point of view for classification. METHODS: Six standard wheelchair mobility performance outcomes of different classification groups were measured in match play (n=29), as well as best possible performance in a field test (n=47). RESULTS: In match-results a clear relationship between classification and performance level is shown, with increased performance outcomes in each adjacent higher classification group. Three outcomes differed significantly between the low and mid-class groups, and one between the mid and high-class groups. In best performance (field test), a split between the low and mid-class groups shows (5 out of 6 outcomes differed significantly) but hardly any difference between the mid and high-class groups. This observed split was confirmed by cluster analysis, revealing the existence of only two performance based clusters. CONCLUSION: The use of inertial sensor technology to get objective measures of wheelchair mobility performance, combined with a standardized field-test, brought alternative views for evidence based classification. The results of this approach provided arguments for a reduced number of classes in wheelchair basketball. Future use of inertial sensors in match play and in field testing could enhance evaluation of classification guidelines as well as individual athlete performance

    Wheelchair mobility performance enhancement by changing wheelchair properties:What is the effect of grip, seat height, and mass?

    No full text
    Purpose: To provide insight on the effect of wheelchair settings on wheelchair mobility performance (WMP). Methods: Twenty elite wheelchair basketball athletes of low (n = 10) and high classification (n = 10) were tested in a wheelchair-basketball-directed field test. Athletes performed the test in their own wheelchairs, whichweremodified for 5 additional conditions regarding seat height (high-low), mass (central-distributed), and grip. The previously developed inertial-sensor-basedWMPmonitor was used to extract wheelchair kinematics in all conditions. Results: Adding mass showed most effect on WMP, with a reduced average acceleration across all activities. Once distributed, additional mass also reduced maximal rotational speed and rotational acceleration. Elevating seat height had an effect on several performance aspects in sprinting and turning, whereas lowering seat height influenced performance minimally. Increased rim grip did not alter performance. No differences in response were evident between low- and high-classified athletes. Conclusions: The WMP monitor showed sensitivity to detect performance differences due to the small changes in wheelchair configuration. Distributed additional mass had the most effect onWMP, whereas additional grip had the least effect of conditions tested. Performance effects appear similar for both low- and high-classified athletes. Athletes, coaches, and wheelchair experts are provided with insight into the performance effect of key wheelchair settings, and they are offered a proven sensitive method to apply in sport practice, in their search for the best wheelchair-athlete combination

    Obtaining wheelchair kinematics with one sensor only? The trade-off between number of inertial sensors and accuracy for measuring wheelchair mobility performance in sports

    No full text
    In wheelchair sports, the use of Inertial Measurement Units (IMUs) has proven to be one of the most accessible ways for ambulatory measurement of wheelchair kinematics. A three-IMU configuration, with one IMU attached to the wheelchair frame and two IMUs on each wheel axle, has previously shown accurate results and is considered optimal for accuracy. Configurations with fewer sensors reduce costs and could enhance usability, but may be less accurate. The aim of this study was to quantify the decline in accuracy for measuring wheelchair kinematics with a stepwise sensor reduction. Ten differently skilled participants performed a series of wheelchair sport specific tests while their performance was simultaneously measured with IMUs and an optical motion capture system which served as reference. Subsequently, both a one-IMU and a two-IMU configuration were validated and the accuracy of the two approaches was compared for linear and angular wheelchair velocity. Results revealed that the one-IMU approach show a mean absolute error (MAE) of 0.10 m/s for absolute linear velocity and a MAE of 8.1°/s for wheelchair angular velocity when compared with the reference system. The two-IMU approach showed similar differences for absolute linear wheelchair velocity (MAE 0.10 m/s), and smaller differences for angular velocity (MAE 3.0°/s). Overall, a lower number of IMUs used in the configuration resulted in a lower accuracy of wheelchair kinematics. Based on the results of this study, choices regarding the number of IMUs can be made depending on the aim, required accuracy and resources available

    Self-reported physical functioning was more influenced by pain than performance-based physical functioning in knee-osteoarthritis patients

    No full text
    Background and Objectives: To test the hypothesis that self-reported physical functioning is more influenced by pain than performance-based physical functioning. Methods: 163 knee-osteoarthritis patients completed the performance-based DynaPort® KneeTest (DPKT), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and SF-36 (self-report measures of pain and physical functioning) before, 3, 6, and 12 months after knee replacement. Results: Correlations between (two) self-reported measures of functioning and (two) pain measures were higher (0.57-0.74) than correlations between the performance-based measure of functioning and the two pain measures (0.20 and 0.26). In factor analysis, WOMAC and SF-36 pain and physical functioning subscores loaded on the first factor (eigenvalue 3.2), while DPKT KneeScore2 loaded on the second factor (eigenvalue 0.92). Before surgery, correlations between performance-based and self-reported physical functioning were higher in patients with less pain (0.43) compared to patients with more pain (0.17), for the WOMAC (as expected), but not for the SF-36. After surgery, when the pain had diminished, the correlations between performance-based and self-reported physical functioning were higher, especially for the WOMAC. Conclusions: Our hypothesis was convincingly supported by the results of the WOMAC, and somewhat less by the results of the SF-36. We consider this as evidence for a lack of content validity of the WOMAC

    The physical demands of wheelchair tennis match play : a systematic review with meta-analysis

    No full text
    AVAILABILITY OF DATA AND MATERIAL : All data generated or analysed during this study are included in this published article and its supplementary information files.BACKGROUND : Wheelchair tennis, a globally popular sport, features a professional tour spanning 40 countries and over 160 tournaments. Despite its widespread appeal, information about the physical demands of wheelchair tennis is scattered across various studies, necessitating a comprehensive systematic review to synthesise available data. OBJECTIVE : The aim was to provide a detailed synthesis of the physical demands associated with wheelchair tennis, encompassing diverse factors such as court surfaces, performance levels, sport classes, and sexes. METHODS : We conducted comprehensive searches in the PubMed, Embase, CINAHL, and SPORTDiscus databases, covering articles from inception to March 1, 2023. Forward and backward citation tracking from the included articles was carried out using Scopus, and we established eligibility criteria following the Population, Exposure, Comparison, Outcome, and Study design (PECOS) framework. Our study focused on wheelchair tennis players participating at regional, national, or international levels, including both juniors and adults, and open and quad players. We analysed singles and doubles matches and considered sex (male, female), sport class (open, quad), and court surface type (hard, clay, grass) as key comparative points. The outcomes of interest encompassed play duration, on-court movement, stroke performance, and physiological match variables. The selected study designs included observational cross-sectional, longitudinal, and intervention studies (baseline data only). We calculated pooled means or mean differences with 95% confidence intervals (CIs) and employed a random-effects meta-analysis with robust variance estimation. We assessed heterogeneity using Cochrane Q and 95% prediction intervals. RESULTS : Our literature search retrieved 643 records, with 24 articles meeting our inclusion criteria. Most available information focused on international male wheelchair tennis players in the open division, primarily competing in singles on hard courts. Key findings (mean [95% CI]) for these players on hard courts were match duration 65.9 min [55.0–78.8], set duration 35.0 min [28.2–43.5], game duration 4.6 min [0.92–23.3], rally duration 6.1 s [3.7–10.2], effective playing time 19.8% [18.9–20.7], and work-to-rest ratio 1:4.1 [1:3.7–1:4.4]. Insufficient data were available to analyse play duration for female players. However, for the available data on hard court matches, the average set duration was 34.8 min [32.5–37.2]. International male players on hard court covered an average distance per match of 3859 m [1917–7768], with mean and peak average forward speeds of 1.06 m/s [0.85–1.32] and 3.55 m/s [2.92–4.31], respectively. These players executed an average of 365.9 [317.2–422.1] strokes per match, 200.6 [134.7–299.0] per set, 25.4 [16.7–38.7] per game, and 3.4 [2.6–4.6] per rally. Insufficient data were available for a meta-analysis of female players’ on-court movement and stroke performance. The average and peak heart rates of international male players on hard court were 134.3 [124.2–145.1] and 166.0 [132.7–207.6] beats per minute, and the average match heart rate expressed as a percentage of peak heart rate was 74.7% [46.4–100]. We found no studies concerning regional players or juniors, and only one study on doubles match play. CONCLUSIONS : While we present a comprehensive overview of the physical demands of wheelchair tennis, our understanding predominantly centres around international male players competing on hard courts in the open division. To attain a more comprehensive insight into the sport’s physical requirements, future research should prioritise the inclusion of data on female and quad players, juniors, doubles, and matches played on clay and grass court surfaces. Such endeavours will facilitate the development of more tailored and effective training programmes for wheelchair tennis players and coaches. The protocol for this systematic review was registered a priori at the International Platform of Registered Systematic Review and Meta-analysis Protocols (Registration https://doi.org/10.37766/inplasy2023.3.0060).https://www.springer.com/journal/402792025-05-09hj2024Sports MedicineSDG-03:Good heatlh and well-bein

    Accelerometry based assessment of gait parameters in children

    No full text
    The objective of this study was to examine if spatio-temporal gait parameters in healthy children can be determined from accelerations measured at the lower trunk as has been demonstrated in adults, previously. Twenty children aged 3-16 years, participated in a protocol that involved repeated walks of different distances in an indoor environment. During walking, accelerations were measured by three orthogonally mounted acceleration sensors in a small wireless device (DynaPort MiniMod) that was attached to the lower back. Based on an inverted pendulum approach, spatio-temporal gait parameters and walking distances were computed from the acceleration signals. Results were compared to video observations and known walking distances and durations. Steps were successfully detected in 99.6+/-0.6% of all observed steps (n=5554). On average, walking distance was accurately estimated (100.6+/-3.3%, range 93-106.7%). No correlation was found between the number of miscounted steps and the total number of steps or the age of the subject. It can be concluded that the use of an inverted pendulum model provides the possibility to estimate spatio-temporal gait parameters in children as well as in adults. The method allows an inexpensive and comfortable assessment of gait parameters in children, is applicable in controlled, indoor environments and could be tested for applicability under free living conditions

    Accelerometry based assessment of gait parameters in children

    No full text
    corecore