7 research outputs found

    A phantom study for the comparison of different brands of computed tomography scanners and software packages for endovascular aneurysm repair sizing and planning

    Get PDF
    Objectives: Correct sizing of endoprostheses used for the treatment of abdominal aortic aneurysms is important to prevent endoleaks and migration. Sizing requires several steps and each step introduces a possible sizing error. The goal of this study was to investigate the magnitude of these errors compared to the golden standard: a vessel phantom. This study focuses on the errors in sizing with three different brands of computed tomography angiography scanners in combination with three reconstruction software packages. Methods: Three phantoms with a different diameter, altitude and azimuth were scanned with three computed tomography scanners: Toshiba Aquilion 64-slice, Philips Brilliance iCT 256-slice and Siemens Somatom Sensation 64-slice. The phantom diameters were determined in the stretched view after central lumen line reconstruction by three observers using Simbionix PROcedure Rehearsal Studio, 3mensio and TeraRecon planning software. The observers, all novices in sizing endoprostheses using planning software, measured 108 slices each. Two senior vascular surgeons set the tolerated error margin of sizing on ±1.0?mm. Results: In total, 11.3% of the measurements (73/648) were outside the set margins of ±1.0 mm from the phantom diameter, with significant differences between the scanner types (14.8%, 12.1%, 6.9% for the Siemens scanner, Philips scanner and Toshiba scanner, respectively, p-value?=?0.032), but not between the software packages (8.3%, 11.1%, 14.4%, p-value?=?0.141) or the observers (10.6%, 9.7%, 13.4%, p-value?=?0.448). Conclusions: It can be concluded that the errors in sizing were independent of the used software packages, but the phantoms scanned with Siemens scanner were significantly more measured incorrectly than the phantoms scanned with the Toshiba scanner. Consequently, awareness on the type of computed tomography scanner and computed tomography scanner setting is necessary, especially in complex abdominal aortic aneurysms sizing for fenestrated or branched endovascular aneurysm repair if appropriate the sizing is of upmost importance

    Ghrelin for Neuroprotection in Post-Cardiac Arrest Coma:A Randomized Clinical Trial

    No full text
    Importance: Out-of-hospital cardiac arrest survival rates have markedly risen in the last decades, but neurological outcome only improved marginally. Despite research on more than 20 neuroprotective strategies involving patients in comas after cardiac arrest, none have demonstrated unequivocal evidence of efficacy; however, treatment with acyl-ghrelin has shown improved functional and histological brain recovery in experimental models of cardiac arrest and was safe in a wide variety of human study populations. Objective: To determine safety and potential efficacy of intravenous acyl-ghrelin to improve neurological outcome in patients in a coma after cardiac arrest. Design, Setting, and Participants: A phase 2, double-blind, placebo-controlled, multicenter, randomized clinical trial, Ghrelin Treatment of Comatose Patients After Cardiac Arrest: A Clinical Trial to Promote Cerebral Recovery (GRECO), was conducted between January 18, 2019, and October 17, 2022. Adult patients 18 years or older who were in a comatose state after cardiac arrest were assessed for eligibility; patients were from 3 intensive care units in the Netherlands. Expected death within 48 hours or unfeasibility of treatment initiation within 12 hours were exclusion criteria. Interventions: Patients were randomized to receive intravenous acyl-ghrelin, 600 μg (intervention group), or placebo (control group) within 12 hours after cardiac arrest, continued for 7 days, twice daily, in addition to standard care. Main Outcomes and Measures: Primary outcome was the score on the Cerebral Performance Categories (CPC) scale at 6 months. Safety outcomes included any serious adverse events. Secondary outcomes were mortality and neuron-specific enolase (NSE) levels on days 1 and 3. Results: A total of 783 adult patients in a coma after cardiac arrest were assessed for eligibility, and 160 patients (median [IQR] age, 68 [57-75] years; 120 male [75%]) were enrolled. A total of 81 patients (51%) were assigned to the intervention group, and 79 (49%) were assigned to the control group. The common odds ratio (OR) for any CPC improvement in the intervention group was 1.78 (95% CI, 0.98-3.22; P =.06). This was consistent over all CPC categories. Mean (SD) NSE levels on day 1 after cardiac arrest were significantly lower in the intervention group (34 [6] μg/L vs 56 [13] μg/L; P =.04) and on day 3 (28 [6] μg/L vs 52 [14] μg/L; P =.08). Serious adverse events were comparable in incidence and type between the groups. Mortality was 37% (30 of 81) in the intervention group vs 51% (40 of 79) in the control group (absolute risk reduction, 14%; 95% CI, -2% to 29%; P =.08). Conclusions and Relevance: In patients in a coma after cardiac arrest, intravenous treatment with acyl-ghrelin was safe and potentially effective to improve neurological outcome. Phase 3 trials are needed for conclusive evidence. Trial Registration: Clinicaltrialsregister.eu: EUCTR2018-000005-23-NL.</p

    Optimizing the risk threshold of lymph node involvement for performing extended pelvic lymph node dissection in prostate cancer patients: a cost-effectiveness analysis

    Get PDF
    Background: Extended pelvic lymph node dissection (ePLND) may be omitted in prostate cancer (CaP) patients with a low predicted risk of lymph node involvement (LNI). The aim of the current study was to quantify the cost-effectiveness of using different risk thresholds for predicted LNI in CaP patients to inform decision making on omitting ePLND. Methods: Five different thresholds (2%, 5%, 10%, 20%, and 100%) used in practice for performing ePLND were compared using a decision analytic cohort model with the 100% threshold (i.e., no ePLND) as reference. Compared outcomes consisted of quality-adjusted life years (QALYs) and costs. Baseline characteristics for the hypothetical cohort were based on an actual Dutch patient cohort containing 925 patients who underwent ePLND with risks of LNI predicted by the Memorial Sloan Kettering Cancer Center web-calculator. The best strategy was selected based on the incremental cost effectiveness ratio when applying a willingness to pay (WTP) threshold of €20,000 per QALY gained. Probabilistic sensitivity analysis was performed with Monte Carlo simulation to assess the robustness of the results. Results: Costs and health outcomes were lowest (€4,858 and 6.04 QALYs) for the 100% threshold, and highest (€10,939 and 6.21 QALYs) for the 2% threshold, respectively. The incremental cost effectiveness ratio for the 2%, 5%, 10%, and 20% threshold compared with the first threshold above (i.e., 5%, 10%, 20%, and 100%) were €189,222/QALY, €130,689/QALY, €51,920/QALY, and €23,187/QALY respectively. Applying a WTP threshold of €20.000 the probabilities for the 2%, 5%, 10%, 20%, and 100% threshold strategies being cost-effective were 0.0%, 0.3%, 4.9%, 30.3%, and 64.5% respectively. Conclusion: Applying a WTP threshold of €20.000, completely omitting ePLND in CaP patients is cost-effective compared to other risk-based strategies. However, applying a 20% threshold for probable LNI to the Briganti 2012 nomogram or the Memorial Sloan Kettering Cancer Center web-calculator, may be a feasible alternative, in particular when higher WTP values are considered
    corecore