259 research outputs found

    Reflecting boundary conditions for interferometry by multidimensional deconvolution

    Full text link

    The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics

    Get PDF
    Biomaterial-related infection of joint replacements is the second most common cause of implant failure, with serious consequences. Chronically infected replacements cannot be treated without removal of the implant, as the bio film mode of growth protects the bacteria against antibiotics. This review discusses bio film formation on joint replacements and the important clinical phenomenon of small-colony variants (SCVs). These slow-growing phenotypic variants often remain undetected or are misdiagnosed using hospital microbiological analyses due to their unusual morphological appearance and biochemical reactions. In addition, SCVs make the infection difficult to eradicate. They often lead to recurrence since they respond poorly to standard antibiotic treatment and can sometimes survive intracellularly

    Flux-normalized elastodynamic wavefield decomposition using only particle velocity recordings

    Full text link
    We present a new approach to apply wavefield decomposition, illustrated for an energy flux-normalized elastodynamic case. We start by considering a situation where two horizontal boreholes are closely separated from each other. By recording only the particle velocities at both depth levels (for example with conventional 3-component geophones) and expressing the one-way wavefields at one depth level in terms of the fields at the other depth level, an inverse problem can be formulated and solved. This new approach of multi-depth level(MDL) wavefield decomposition is illustrated with a synthetic 2D finite difference example, showing correct one-way wavefield retrieval. We then modify the methodology for a special case with a single receiver array just below a free surface, where the problem is naturally constrained by the (Dirichlet) boundary condition at the free-surface. Again, it is shown that correct elastodynamic wavefield decomposition takes place, for both P- and S-waves

    Gentamicin release from commercially-available gentamicin-loaded PMMA bone cements in a prosthesis-related interfacial gap model and their antibacterial efficacy

    Get PDF
    BACKGROUND: Around about 1970, a gentamicin-loaded poly (methylmethacrylate) (PMMA) bone cement brand (Refobacin Palacos R) was introduced to control infection in joint arthroplasties. In 2005, this brand was replaced by two gentamicin-loaded follow-up brands, Refobacin Bone Cement R and Palacos R + G. In addition, another gentamicin-loaded cement brand, SmartSet GHV, was introduced in Europe in 2003. In the present study, we investigated differences in gentamicin release and the antibacterial efficacy of the eluent between these four cement brands. METHODS: 200 μm-wide gaps were made in samples of each cement and filled with buffer in order to measure the gentamicin release. Release kinetics were related to bone cement powder particle characteristics and wettabilities of the cement surfaces. Gaps were also inoculated with bacteria isolated from infected prostheses for 24 h and their survival determined. Gentamicin release and bacterial survival were statistically analysed using the Student's t-test. RESULTS: All three Palacos variants showed equal burst releases but each of the successor Palacos cements showed significantly higher sustained releases. SmartSet GHV showed a significantly higher burst release, while its sustained release was comparable with original Palacos. A gentamicin-sensitive bacterium did not survive in the high gentamicin concentrations in the interfacial gaps, while a gentamicin-resistant strain did, regardless of the type of cement used. Survival was independent of the level of burst release by the bone cement. CONCLUSIONS: Although marketed as the original gentamicin-loaded Palacos cement, orthopaedic surgeons should be aware that the successor cements do not appear to have the same release characteristics as the original one. Overall, high gentamicin concentrations were reached inside our prosthesis-related interfacial gap model. These concentrations may be expected to effectively decontaminate the prosthesis-related interfacial gap directly after implantation, provided that these bacteria are sensitive for gentamicin
    corecore