99 research outputs found

    Development of bacteria-based bioassays for arsenic detection in natural waters

    Get PDF
    Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor-reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor-reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clam

    An Erythropoietin-Independent Mechanism of Erythrocytic Precursor Proliferation Underlies Hypoxia Tolerance in Sea Nomads

    Get PDF
    The Bajau Sea Nomads were recently demonstrated to have evolved larger spleens as an adaptation to millennia of a marine foraging lifestyle. The large-spleen phenotype appears to derive from increases in thyroid hormone (TH) production as a result of reduced expression of phosphodiesterase 10A (PDE10A), though the exact mechanism remains unknown. Through pharmacological inhibition of PDE10A using the selective inhibitor MP-10 in mice, we were able to mimic the Bajau adaptation and show that treated mice had significantly larger spleens than control animals. This difference appears connected to an excess of early stage erythrocytes and an apparent increase in red blood cell (RBC) precursor proliferation in response to increased TH. However, we determined that the stimulation of RBC production in the mouse model via TH is Erythropoietin (EPO)-independent, unlike in the altitude (chronic hypoxemia) response. We confirmed this using human GWAS data; although the Bajau PDE10A variants are significantly associated with increased TH levels and RBC count, they are not associated with EPO levels, nor are other strongly thyroid-associated SNPs. We therefore suggest that an EPO-independent mechanism of stimulating RBC precursor proliferation via TH upregulation underlies the increase in spleen size observed in Sea Nomad populations

    Paths to wider adoption of e-infrastructure services

    Get PDF
    This paper presents work conducted as part of the e-Uptake project, which aims to widen the uptake of e-Infrastructure services for research. We will discuss our fieldwork conducted so far, give examples of the barriers and enablers identified and discuss how using the accumulated knowledge can lead to paving the way for wider adoption of e Infrastructure Services

    Genotype at the P554L Variant of the Hexose-6 Phosphate Dehydrogenase Gene Is Associated with Carotid Intima-Medial Thickness

    Get PDF
    Objective: The combined thickness of the intima and media of the carotid artery (carotid intima-medial thickness, CIMT) is associated with cardiovascular disease and stroke. Previous studies indicate that carotid intima-medial thickness is a significantly heritable phenotype, but the responsible genes are largely unknown. Hexose-6 phosphate dehydrogenase (H6PDH) is a microsomal enzyme whose activity regulates corticosteroid metabolism in the liver and adipose tissue; variability in measures of corticosteroid metabolism within the normal range have been associated with risk factors for cardiovascular disease. We performed a genetic association study in 854 members of 224 families to assess the relationship between polymorphisms in the gene coding for hexose-6 phosphate dehydrogenase (H6PD) and carotid intima-medial thickness. Methods: Families were ascertained via a hypertensive proband. CIMT was measured using B-mode ultrasound. Single nucleotide polymorphisms (SNPs) tagging common variation in the H6PD gene were genotyped. Association was assessed following adjustment for significant covariates including "classical" cardiovascular risk factors. Functional studies to determine the effect of particular SNPs on H6PDH were performed. Results: There was evidence of association between the single nucleotide polymorphism rs17368528 in exon five of the H6PD gene, which encodes an amino-acid change from proline to leucine in the H6PDH protein, and mean carotid intima-medial thickness (p = 0.00065). Genotype was associated with a 5% (or 0.04 mm) higher mean carotid intima-medial thickness measurement per allele, and determined 2% of the population variability in the phenotype. Conclusions: Our results suggest a novel role for the H6PD gene in atherosclerosis susceptibility

    Loss of Myotubularin Function Results in T-Tubule Disorganization in Zebrafish and Human Myotubular Myopathy

    Get PDF
    Myotubularin is a lipid phosphatase implicated in endosomal trafficking in vitro, but with an unknown function in vivo. Mutations in myotubularin cause myotubular myopathy, a devastating congenital myopathy with unclear pathogenesis and no current therapies. Myotubular myopathy was the first described of a growing list of conditions caused by mutations in proteins implicated in membrane trafficking. To advance the understanding of myotubularin function and disease pathogenesis, we have created a zebrafish model of myotubular myopathy using morpholino antisense technology. Zebrafish with reduced levels of myotubularin have significantly impaired motor function and obvious histopathologic changes in their muscle. These changes include abnormally shaped and positioned nuclei and myofiber hypotrophy. These findings are consistent with those observed in the human disease. We demonstrate for the first time that myotubularin functions to regulate PI3P levels in a vertebrate in vivo, and that homologous myotubularin-related proteins can functionally compensate for the loss of myotubularin. Finally, we identify abnormalities in the tubulo-reticular network in muscle from myotubularin zebrafish morphants and correlate these changes with abnormalities in T-tubule organization in biopsies from patients with myotubular myopathy. In all, we have generated a new model of myotubular myopathy and employed this model to uncover a novel function for myotubularin and a new pathomechanism for the human disease that may explain the weakness associated with the condition (defective excitation–contraction coupling). In addition, our findings of tubuloreticular abnormalities and defective excitation-contraction coupling mechanistically link myotubular myopathy with several other inherited muscle diseases, most notably those due to ryanodine receptor mutations. Based on our findings, we speculate that congenital myopathies, usually considered entities with similar clinical features but very disparate pathomechanisms, may at their root be disorders of calcium homeostasis

    A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations

    Get PDF
    Article suggests that common standards for recording, detection, and reporting for intracranial recordings in humans that suggest their role in episodic and semantic memory does not exist. Authors of the article outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations, and argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery

    Long-term thermal sensitivity of Earth’s tropical forests

    Get PDF
    The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore