4 research outputs found

    The therapeutic potential of polymersomes loaded with <sup>225</sup>Ac evaluated in 2D and 3D in vitro glioma models

    No full text
    Alpha emitters have great potential in targeted tumour therapy, especially in destroying micrometastases, due to their high linear energy transfer (LET). To prevent toxicity caused by recoiled daughter atoms in healthy tissue, alpha emitters like 225Ac can be encapsulated in polymeric nanocarriers (polymersomes), which are capable of retaining the daughter atoms to a large degree. In the translation to a (pre-)clinical setting, it is essential to evaluate their therapeutic potential. As multicellular tumour spheroids mimic a tumour microenvironment more closely than a two-dimensional cellular monolayer, this study has focussed on the interaction of the polymersomes with U87 human glioma spheroids. We have found that polymersomes distribute themselves throughout the spheroid after 4 days which, considering the long half-life of 225Ac (9.9 d) (Vaidyanathan and Zalutsky, 1996), allows for irradiation of the entire spheroid. A decrease in spheroidal growth has been observed upon the addition of only 0.1 kBq 225Ac, an effect which was more pronounced for the 225Ac in polymersomes than when only coupled to DTPA. At higher activities (5 kBq), the spheroids have been found to be destroyed completely after two days. We have thus demonstrated that 225Ac containing polymersomes effectively inhibit tumour spheroid growth, making them very promising candidates for future in vivo testing.RST/Applied Radiation & IsotopesRST/Technici PoolImPhys/OpleidingTechnische Natuurkund

    Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects

    No full text
    177Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β− emission results in very efficient energy deposition in small-size tumours. Because of this, 177Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177mLu and 177Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177mLu/177Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177Lu and can bring significant growth in the research and development of 177Lu based pharmaceuticals.RST/Applied Radiation & IsotopesRST/Radiation, Science and TechnologyChemE/Catalysis Engineerin

    Preclinical evaluation of binimetinib (MEK162) delivered via polymeric nanocarriers in combination with radiation and temozolomide in glioma

    No full text
    Background and purpose: Glioblastoma multiforme (GBM) is the most aggressive subtype of malignant gliomas, with an average survival rate of 15 months after diagnosis. More than 90% of all GBMs have activating mutations in the MAPK/ERK pathway. Recently, we showed the allosteric MEK1/2 inhibitor binimetinib (MEK162) to inhibit cell proliferation and to enhance the effect of radiation in preclinical human GBM models. Because the free drug cannot pass the blood–brain barrier (BBB), we investigated the use of nanocarriers for transport of the drug through the BBB and its efficacy when combined with radiotherapy and temozolomide (TMZ) in glioma spheroids. Methods: In vitro studies were performed using multicellular U87 human GBM spheroids. Polymeric nanocarriers (polymersomes) were loaded with MEK162. The interaction between nanocarrier delivered MEK162, irradiation and TMZ was studied on the kinetics of spheroid growth and on protein expression in the MAPK/ERK pathway. BBB passaging was evaluated in a transwell system with human cerebral microvascular endothelial (hCMEC/D3) cells. Results: MEK162 loaded polymersomes inhibited spheroid growth. A synergistic effect was found in combination with fractionated irradiation and an additive effect with TMZ on spheroid volume reduction. Fluorescent labeled polymersomes were taken up by human cerebral microvascular endothelial cells and passed the BBB in vitro. Conclusion: MEK162 loaded polymersomes are taken up by multicellular spheroids. The nanocarrier delivered drug reduced spheroid growth and inhibited its molecular target. MEK162 delivered via polymersomes showed interaction with irradiation and TMZ. The polymersomes crossed the in vitro BBB model and therewith offer exciting challenges ahead for delivery of therapeutics agents to brain tumours.RST/Applied Radiation & IsotopesRST/Technici PoolChemE/Advanced Soft Matte
    corecore