2 research outputs found

    Direct evidence of microbiological water quality changes on bacterial quantity and community caused by plumbing system

    No full text
    Drinking water quality deteriorates from treatment plant to customer taps, especially in the plumbing system. There is no direct evidence about what the differences are contributed by plumbing system. This study compared the water quality in the water main and at customer tap by preparing a sampling tap on the water main. The biomass was quantified by adenosine triphosphate (ATP) and the microbial community was profiled by 454 pyrosequencing. The results showed that in distribution pipes, biofilm contributed >94% of the total biomass, while loose deposits showed little contribution (< 2%) because of the low amount of loose deposits. The distribution of biological stable water had minor effects on the microbiocidal water quality regarding both quantity (ATP 1 ng/L vs. 1.7 ng/L) and community of the bacteria. Whereas the plumbing system has significant contribution to the increase of active biomass (1.7 ng/L vs. 2.9 ng/L) and the changes of bacterial community. The relative abundance of Sphingomonas spp. at tap (22%) was higher than that at water main (2%), while the relative abundance of Pseudomonas spp. in tap water (15%) was lower than that in the water from street water main (29%). Though only one location was prepared and studied, the present study showed that the protocol of making sampling tap on water main offered directly evidences about the impacts of plumbing system on tap water quality, which makes it possible to distinguish and study the processes in distribution system and plumbing system separately.Sanitary Engineerin

    Microbial community assembly and metabolic function in top layers of slow sand filters for drinking water production

    Get PDF
    Slow sand filters (SSFs) are widely applied to treat potable water; the removal of contaminants (e.g., particles, organic matter, and microorganism) occurs primarily in the top layer. However, the development of the microbial community and its metabolic function is still poorly understood. In the present study, we analyzed the microbial quantity and community of the influents sampled from the effluent of the last step (rapid sand filtration) and of the top layers of SSFs (Schmutzdecke, 0–2 cm, 4–6 cm, 8–10 cm) sampled near terminal head loss when the Schmutzdecke (SCM) was most developed in two full-scale drinking water treatment plants (DWTPs). The two DWTPs use the same artificially recharged groundwater source. The biomass in the filter, quantified by flow cytometric intact cell counts (ICC) and adenosine triphosphate (ATP), decreased rapidly along the depth till 8–10 cm (>1 log TCC; >75% ATP); the decrease was most pronounced from the SCM to the surface sand layer (0–2 cm), after which the biomass stabilized quickly at lower depths (2–10 cm). Remarkably, beta diversity showed that SSFs layers of the same depth in two DWTPs with distinctive filter age and plant location clustered together, which indicated their insignificant effects in shaping microbial communities in SSFs. The alpha diversity indices followed the trend of the biomass, suggesting more active and diverse communities in SCM layer. PICRUSt-based function prediction revealed significant over-representation of metabolism and degradation of complex organic matters (e.g., butanoate, propanoate, xenobiotic, D-Alanine, chloroalkene, and bisphenol) in SCM layer, the functional importance of which was confirmed by the co-occurrence patterns of the dominant taxa and metabolic functions. Using an island biogeography model, we found that microbial communities in SSFs were strongly assembled by selection (68 OTUs, 50.0% sequences), rather than by simple accumulation of the microbial communities in the influents (120 OTUs, 44.8% sequences). Our findings enhance the understanding of microbial community assembly and of metabolic function in the top layers of SSFs, and constitute a valuable contribution to optimizing the design and operation of biofilters in full-scale DWTPs.Sanitary EngineeringBT/Environmental Biotechnolog
    corecore