297 research outputs found

    Organic management and soil health promote nutrient use efficiency

    Full text link
    Introduction: Nitrogen is a key nutrient for plants. Often less than 50% of the applied nitrogen fertilisers is acquired by crops and nitrogen can be easily lost into the environment causing environmental pollution. Thus, to make agriculture more sustainable, it is important to investigate which factors determine nitrogen use efficiency (NUE). We investigated whether NUE was higher in organically managed soils compared to conventionally managed soils. Materials and Methods: To test this, we carried out a pot experiment in a greenhouse using soils from 16 fields. The soils were collected from conventionally (eight fields) or organically managed fields (eight fields). In addition, plants received two different 15N enriched N sources (mineral 15N or an organic fertiliser source, namely 15N enriched plant litter). Plants were harvested at three time points, and growth and nitrogen uptake were assessed at each time point. Results: NUE depended on management type and harvest time and the higher NUE of organically managed soils became more evident towards the second and third harvest. The average NUE at the end of the experiment was 93% and 55% for mineral fertiliser and litter application, respectively. This indicated that mineral fertilisers were immediately acquired by the plants, while nutrients in organic amendments had a lower availability and probably would be supplied later but steadier. Further, NUE was positively linked to microbial biomass, soil organic carbon content, and aggregate size, indicating that enhanced soil quality and soil health leads to a more efficient use of fertilisers. Conclusion: Our results indicate that organic management and soil health promote a more efficient use of nutrients and contribute to a more sustainable agriculture

    Enumerating soil biodiversity

    Full text link
    Soil is an immense habitat for diverse organisms across the tree of life, but just how many organisms live in soil is surprisingly unknown. Previous efforts to enumerate soil biodiversity consider only certain types of organisms (e.g., animals) or report values for diverse groups without partitioning species that live in soil versus other habitats. Here, we reviewed the biodiversity literature to show that soil is likely home to 59 ± 15% of the species on Earth. We therefore estimate an approximately two times greater soil biodiversity than previous estimates, and we include representatives from the simplest (microbial) to most complex (mammals) organisms. Enchytraeidae have the greatest percentage of species in soil (98.6%), followed by fungi (90%), Plantae (85.5%), and Isoptera (84.2%). Our results demonstrate that soil is the most biodiverse singular habitat. By using this estimate of soil biodiversity, we can more accurately and quantitatively advocate for soil organismal conservation and restoration as a central goal of the Anthropocene

    The plant–mycorrhizal fungi collaboration gradient depends on plant functional group

    Full text link
    1. Plant colonization by arbuscular mycorrhizal fungi (AMF) is widespread and can offer considerable benefits in terms of growth, nutrient uptake and plant yield. However, it is still unresolved how different plant species and plant functional groups respond to AMF and to different AMF taxa. 2. Here we established 336 grassland microcosms to determine the response of 14 plant species displaying contrasting functional groups (grasses, legumes and non-leguminous forbs) for the presence of three different AMF taxa. For each plant species, we calculated the degree to which plant growth depended on AMF colonization (i.e. mycorrhizal dependency [MD]). We also determined the degree to which each plant species relied on specific AMF taxa for optimal growth (i.e. mycorrhizal species sensitivity [MSS]). Additionally, we determined whether MD and MSS correlated to specific plant traits (i.e. specific root length [SRL], specific leaf area [SLA]). 3. The plant growth response to AMF ranged from −84.9% for a non-mycorrhizal plant (Luzula campestris) to +94.0% for a legume (Trifolium arvensis). The MD was systematically higher in legumes (91.9% ± 2.4%), followed by non-leguminous forbs (77.1% ± 11.06) and grasses (42.1% ± 15.73%). MSS was less variable (8.9%–37.7%); it was independent of plant functional group and did not correlate with MD. MD was linked to various mycorrhizal plant parameters, including AMF colonization (R2 = +0.80) and total dry biomass (R2 = +0.32). Moreover, among mycorrhizal plants (n = 12), MD negatively correlated with SRL (R2 = −0.24) and positively with SLA (R2 = +0.24). 4. Synthesis. This study shows that plants relying on AMF for biomass production also show higher root colonization, lower SRL, higher SLA and that different plant traits are interlinked with the way how plants respond to AMF. Overall, this study further demonstrates that different plant functional groups vary in their response to AMF

    Belowground carbon transfer across mycorrhizal networks among trees: Facts, not fantasy

    Full text link
    The mycorrhizal symbiosis between fungi and plants is among the oldest, ubiquitous and most important interactions in terrestrial life on Earth. Carbon (C) transfer across a common mycorrhizal network (CMN) was demonstrated over half a century ago in the lab (Reid and Woods 1969), and later in the field (Simard et al. 1997). Recent years have seen ample progress in this research direction, including evidence for ecological significance of carbon transfer (Klein et al. 2016). Furthermore, specific cases where the architecture of mycorrhizal networks have been mapped (Beiler et al. 2015) and CMNC transfer from mature trees to seedlings has been demonstrated (Orrego 2018) have suggested that trees in forests are more connected than once thought (Simard 2021). In a recent Perspective, Karst et al. (2023) offered a valuable critical review warning of overinterpretation and positive citation bias in CMN research. It concluded that while there is evidence for C movement among plants, the importance of CMNs remains unclear, as noted by others too (Henriksson et al. 2023). Here we argue that while some of these claims are justified, factual evidence about belowground C transfer across CMNs is solid and accumulating

    Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism

    Full text link
    The mutualism between plants and arbuscular mycorrhizal fungi (AMF) is widespread and has persisted for over 400 million years. Although this mutualism depends on fair resource exchange between plants and fungi, inequality exists among partners despite mechanisms that regulate trade. Here, we use (33) P and (14) C isotopes and a split-root system to test for preferential allocation and reciprocal rewards in the plant-AMF symbiosis by presenting a plant with two AMF that differ in cooperativeness. We found that plants received more (33) P from less cooperative AMF in the presence of another AMF species. This increase in (33) P resulted in a reduced (14) C cost per unit of (33) P from less cooperative AMF when alternative options were available. Our results indicate that AMF diversity promotes cooperation between plants and AMF, which may be an important mechanism maintaining the evolutionary persistence of and diversity within the plant-AMF mutualism

    Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms

    Full text link
    Soil biota contribute substantially to multiple ecosystem functions that are key for geochemical cycles and plant performance. However, soil biodiversity is currently threatened by land-use intensification, and a mechanistic understanding of how soil biodiversity loss interacts with the myriad of intensification elements (e.g., the application of chemical fertilizers) is still unresolved. Here we experimentally simplified soil biological communities in microcosms to test whether changes in the soil microbiome influenced soil multifunctionality including crop productivity (leek, Allium porrum). Additionally, half of microcosms were fertilized to further explore how different levels of soil biodiversity interact with nutrient additions. Our experimental manipulation achieved a significant reduction of soil alpha-diversity (45.9 % reduction in bacterial richness, 82.9 % reduction in eukaryote richness) and resulted in the complete removal of key taxa (i.e., arbuscular mycorrhizal fungi). Soil community simplification led to an overall decrease in ecosystem multifunctionality; particularly, plant productivity and soil nutrient retention capacity were reduced with reduced levels of soil biodiversity. Ecosystem multifunctionality was positively correlated with soil biodiversity (R = 0.79). Mineral fertilizer application had little effect on multifunctionality compared to soil biodiversity reduction, but it reduced leek nitrogen uptake from decomposing litter by 38.8 %. This suggests that natural processes and organic nitrogen acquisition are impaired by fertilization. Random forest analyses revealed a few members of protists (i.e., Paraflabellula), Actinobacteria (i.e., Micolunatus), and Firmicutes (i.e., Bacillus) as indicators of ecosystem multifunctionality. Our results suggest that preserving the diversity of soil bacterial and eukaryotic communities within agroecosystems is crucial to ensure the provisioning of multiple ecosystem functions, particularly those directly related to essential ecosystem services such as food provision

    Linking diversity, synchrony and stability in soil microbial communities

    Get PDF
    1. It is becoming well established that plant diversity is instrumental in stabilizing the temporal functioning of ecosystems through population dynamics and the so-called insurance or portfolio effect. However, it is unclear whether diversity-stability relationships and the role of population dynamics in soil microbial communities parallel those in plant communities. 2. Our study took place in a long-term land management experiment with and without perturbation to the soil ecosystem by tilling. We assessed the impacts of the soil perturbation on the diversity, synchrony and stability relationships in soil fungal and bacterial communities. 3. We found that the perturbation to the soil ecosystem not only reduced the abundance and richness of the fungal community, but it also reduced the temporal stability in both bacterial and fungal abundance. The fungal community abundance was destabilized by soil tilling due to reduced richness and increased temporal variation of individual taxa. In contrast, soil tilling destabilized the bacterial community abundance by reducing the temporal variation of individual taxa. Both bacterial and fungal community abundances were more temporally variable when taxa fluctuated more synchronously through time. 4. Our results show that land management practices, such as tilling, can destabilize soil microbial abundance by reducing the richness and disrupting the temporal dynamics belowground. However, the differences in the mechanisms that underlie the temporal variations in fungal and bacterial net abundances suggests that the mechanisms that drive the stability can differ among guilds of organisms within the same system. The different temporal responses between the fungal and bacterial communities are likely linked to changes in edaphic properties resulting from the physical alteration of the soil structure

    Concerted Evaluation of Pesticides in Soils of Extensive Grassland Sites and Organic and Conventional Vegetable Fields Facilitates the Identification of Major Input Processes

    Full text link
    The intensive use of pesticides and their subsequent distribution to the environment and non-target organisms is of increasing concern. So far, little is known about the occurrence of pesticides in soils of untreated areas─such as ecological refuges─as well as the processes contributing to this unwanted pesticide contamination. In this study, we analyzed the presence and abundance of 46 different pesticides in soils from extensively managed grassland sites, as well as organically and conventionally managed vegetable fields (60 fields in total). Pesticides were found in all soils, including the extensive grassland sites, demonstrating a widespread background contamination of soils with pesticides. The results suggest that after conversion from conventional to organic farming, the organic fields reach pesticide levels as low as those of grassland sites not until 20 years later. Furthermore, the different pesticide composition patterns in grassland sites and organically managed fields facilitated differentiation between long-term persistence of residues and diffuse contamination processes, that is, short-scale redistribution (spray drift) and long-scale dispersion (atmospheric deposition), to offsite contamination

    Water uptake patterns of pea and barley responded to drought but not to cropping systems

    Full text link
    Agricultural production is under threat of water scarcity due to increasingly frequent and severe drought events under climate change. Whether a change in cropping systems can be used as an effective adaptation strategy against drought is still unclear. We investigated how plant water uptake patterns of a field-grown pea–barley (Pisum sativum L. and Hordeum vulgare L.) mixture, an important fodder intercrop, responded to experimental drought under four cropping systems, i.e. organic intensive tillage, conventional intensive tillage, conventional no tillage, and organic reduced tillage. Drought was simulated after crop establishment using rain shelters. Proportional contributions to plant water uptake from different soil layers were estimated based on stable water isotopes using Bayesian mixing models. Pea plants always took up proportionally more water from shallower depths than barley plants.Water uptake patterns of neither species were affected by cropping systems. Both species showed similar responses to the drought simulation and increased their proportional water uptake from the shallow soil layer (0–20 cm) in all cropping systems. Our results highlight the impact of drought on plant water uptake patterns for two important crop species and suggest that cropping systems might not be as successful as adaptation strategies against drought as previously thought
    • …
    corecore