7 research outputs found

    The significance of mycorrhizal fungi for crop productivity and ecosystem sustainability in organic farming systems

    Get PDF
    Mycorrhizal fungi are widespread in agricultural systems and are especially relevant for organic agriculture because they can act as natural fertilisers, enhancing plant yield. Here we explore the various roles that mycorrhizal fungi play in sustainable farming systems with special emphasis on their contribution to crop productivity and ecosystem functioning. We review the literature and provide a number of mechanisms and processes by which mycorrhizal fungi can contribute to crop productivity and ecosystem sustainability. We then present novel results, showing that mycorrhizal fungi can be used to suppress several problematic agricultural weeds. Our results highlight the significance of mycorrhizal fungi for sustainable farming systems and point to the need to develop farming systems in which the positive effect of these beneficial soil fungi is optimally being utilized

    Mycorrhizal fungi suppress aggressive Agricultural weeds.

    Get PDF
    Plant growth responses to arbuscular mycorrhizal fungi (AMF) are highly variable, ranging from mutualism in a wide range of plants, to antagonism in some non-mycorrhizal plant species and plants characteristic of disturbed environments. Many agricultural weeds are non mycorrhizal or originate from ruderal environments where AMF are rare or absent. This led us to hypothesize that AMF may suppress weed growth, a mycorrhizal attribute which has hardly been considered. We investigated the impact of AMF and AMF diversity (three versus one AMF taxon) on weed growth in experimental microcosms where a crop (sunflower) was grown together with six widespread weed species. The presence of AMF reduced total weed biomass with 47% in microcosms where weeds were grown together with sunflower and with 25% in microcosms where weeds were grown alone. The biomass of two out of six weed species was significantly reduced by AMF (-66% & -59%) while the biomass of the four remaining weed species was only slightly reduced (-20% to -37%). Sunflower productivity was not influenced by AMF or AMF diversity. However, sunflower benefitted from AMF via enhanced phosphorus nutrition. The results indicate that the stimulation of arbuscular mycorrhizal fungi in agro-ecosystems may suppress some aggressive weeds

    Bacterial Gut Symbionts Contribute to Seed Digestion in an Omnivorous Beetle

    Get PDF
    Obligate bacterial symbionts alter the diets of host animals in numerous ways, but the ecological roles of facultative bacterial residents that colonize insect guts remain unclear. Carabid beetles are a common group of beneficial insects appreciated for their ability to consume insect prey and seeds, but the contributions of microbes to diet diversification in this and similar groups of facultative granivores are largely unknown.Using 16S rRNA gene clone libraries and terminal restriction fragment (tRF) length polymorphism analyses of these genes, we examined the bacterial communities within the guts of facultatively granivorous, adult Harpalus pensylvanicus (Carabidae), fed one of five dietary treatments: 1) an untreated Field population, 2) Seeds with antibiotics (seeds were from Chenopodium album), 3) Seeds without antibiotics, 4) Prey with antibiotics (prey were Acheta domesticus eggs), and 5) Prey without antibiotics. The number of seeds and prey consumed by each beetle were recorded following treatment. Harpalus pensylvanicus possessed a fairly simple gut community of approximately 3-4 bacterial operational taxonomic units (OTU) per beetle that were affiliated with the Gammaproteobacteria, Bacilli, Alphaproteobacteria, and Mollicutes. Bacterial communities of the host varied among the diet and antibiotic treatments. The field population and beetles fed seeds without antibiotics had the closest matching bacterial communities, and the communities in the beetles fed antibiotics were more closely related to each other than to those of the beetles that did not receive antibiotics. Antibiotics reduced and altered the bacterial communities found in the beetle guts. Moreover, beetles fed antibiotics ate fewer seeds, and those beetles that harbored the bacterium Enterococcus faecalis consumed more seeds on average than those lacking this symbiont.We conclude that the relationships between the bacterium E. faecalis and this factultative granivore's ability to consume seeds merit further investigation, and that facultative associations with symbiotic bacteria have important implications for the nutritional ecology of their hosts

    Arbuscular mycorrhizal fungi colonize nonfixing roots nodules of several legume species.

    Get PDF
    • Many legumes form tripartite symbiotic associations with rhizobia and arbuscular mycorrhizal fungi (AMF). Rhizobia are located in root nodules and provide the plant with fixed atmospheric nitrogen, while AMF colonize plant roots and deliver several essential nutrients to the plant. Recent studies showed that AMF are also associated with root nodules. This might point to interactions between AMF and rhizobia inside root nodules. • Here, we test whether AMF colonize root nodules in various plant-AMF combinations. We also test whether nodules that are colonized by AMF fix nitrogen. • Using microscopy, we observed that AMF colonized the root nodules of three different legume species. The AMF colonization of the nodules ranged from 5% to 74% and depended on plant species, AMF identity and nutrient availability. However, AMF-colonized nodules were not active, that is, they did not fix nitrogen. • The results suggest that AMF colonize old senescent nodules after nitrogen fixation has stopped, although it is also possible that AMF colonization of nodules inhibits nitrogen fixation. © The Authors (2006)

    No evidence for allelopathic effects of arbuscular mycorrhizal fungi on the non-host plant Stellaria media

    No full text
    Background and aims: Increasing evidence suggests that several plants, particularly non-mycorrhizal species, are negatively affected by the presence of arbuscular mycorrhizal fungi (AMF). Mechanisms explaining suppressive effects of AMF are, however, still poorly understood. Here we test whether growth suppression of the non-host weed Stellaria media in the presence of AMF can be explained by mycorrhizal alellopathy. Methods: We grew S. media in microcosms where an active AM mycelium was supported by neighboring wheat (Triticum aestivum) plants. To test for allelopathy, we added activated carbon (AC) to the soil substrate. In addition, we performed two complementary experiments where extracts from roots extensively colonized by AMF (AMexudates) were directly applied to S. media seeds and seedlings. Results: Stellaria media plants grown in microcosms with AM mycelium showed an 8-fold biomass reduction compared to microcosms where AMF were absent. The addition of AC, which is thought to reduce allelopathic effects by binding organic compounds, did not greatly mitigate the negative effect of AM mycelium on S. media growth. Moreover, AM exudates did not significantly reduce S. media germination and growth. Conclusions: Results from this study confirm that nonhosts like S. media can be highly suppressed in the presence of AMF. However, we found no evidence that mycorrhizal allelopathy was a major mechanism responsible for growth suppression of S. media in the presence of AMF. Other mechanisms might therefore be more significant in explaining suppressive effects of AMF on non-host plant species
    corecore