443 research outputs found

    Brownian particles in transient polymer networks

    Get PDF
    We discuss the thermal motion of colloidal particles in transient polymer networks. For particles that are physically bound to the surrounding chains, light-scattering experiments reveal that the submillisecond dynamics changes from diffusive to Rouse-like upon crossing the network formation threshold. Particles that are not bound do not show such a transition. At longer time scales the mean-square displacement (MSD) exhibits a caging plateau and, ultimately, a slow diffusive motion. The slow diffusion at longer time scales can be related to the macroscopic viscosity of the polymer solutions. Expressions that relate the caging plateau to the macroscopic network elasticity are found to fail for the cases presented here. The typical Rouse scaling of the MSD with the square root of time, as found in experiments at short time scales, is explained by developing a bead-spring model of a large colloidal particle connected to several polymer chains. The resulting analytical expressions for the MSD of the colloidal particle are shown to be consistent with experimental findings

    Relaxation dynamics at different time scales in electrostatic complexes: Time-salt superposition

    Get PDF
    In this Letter we show that in the rheology of electrostatically assembled soft materials, salt concentration plays a similar role as temperature for polymer melts, and as strain rate for soft solids. We rescale linear and nonlinear rheological data of a set of model electrostatic complexes at different salt concentrations to access a range of time scales that is otherwise inaccessible. This provides new insights into the relaxation mechanisms of electrostatic complexes, which we rationalize in terms of a microscopic mechanism underlying salt-enhanced activated processe

    Groepsgedrag op de nanoschaal

    Get PDF

    Dynamics of polymer bridge formation and disruption

    Get PDF
    In this Letter we show, with colloidal probe AFM measurements, that the formation and subsequent disruption of polymer bridges between two solid surfaces is characterized by slow relaxation times. This is due to the retardation of polymer dynamics near a surface. For colloidal particles, that are in constant (Brownian) motion, kinetic aspects are key. To understand these effects, we develop a model of polymer bridging and bridge disruption that agrees quantitatively with our experiment

    Non-Gaussian curvature distribution of actin-propelled biomimetric colloid trajectories

    Get PDF
    We analyze the motion of colloids propelled by a comet-like tail of polymerizing actin filaments. The curvature of the particle trajectories deviates strongly from a Gaussian distribution, implying that the underlying microscopic processes are fluctuating in a non-independent manner. Trajectories for beads of different size all showed the same non-Gaussian behavior, while the mean curvature decreased weakly with size. A stochastic simulation that includes nucleation, force-dependent dissociation, growth, and capping of filaments, shows that the non-Gaussian curvature distribution can be explained by a positive feedback mechanism in which attached chains under higher tension are more likely to sna

    Multiple shear-banding transitions in a supramolecular polymer solution

    Get PDF
    We report on the nonlinear rheology of a reversible supramolecular polymer based on hydrogen bonding. The coupling between the flow-induced chain alignment and breakage and recombination of bonds between monomers leads to a very unusual flow behavior. Measured velocity profiles indicate three different shear-banding regimes upon increasing shear rate, each with different characteristics. While the first of these regimes has features of a mechanical instability, the second shear-banding regime is related to a shear-induced phase separation and the appearance of birefringent textures. The shear-induced phase itself becomes unstable at very high shear rates, giving rise to a third banding regime

    Linking slow dynamics and microscopic connectivity in dense suspensions of charged colloids

    Get PDF
    The quest to unravel the nature of the glass transition, where the viscosity of a liquid increases by many orders of magnitude, while its static structure remains largely unaffected, remains unresolved. While various structural and dynamical precursors to vitrification have been identified, a predictive and quantitative description of how subtle changes at the microscopic scale give rise to the steep growth in macroscopic viscosity is missing. It was recently proposed that the presence of long-lived bonded structures within the liquid may provide the long-sought connection between local structure and global dynamics. Here we directly observe and quantify the connectivity dynamics in liquids of charged colloids en route to vitrification using three-dimensional confocal microscopy. We determine the dynamic structure from the real-space van Hove correlation function and from the particle trajectories, providing upper and lower bounds on connectivity dynamics. Based on these data, we extend Dyre's model for the glass transition to account for particle-level structural dynamics; this results in a microscopic expression for the slowing down of relaxations in the liquid that is in quantitative agreement with our experiments. These results indicate how vitrification may be understood as a dynamical connectivity transition with features that are strongly reminiscent of rigidity percolation scenarios

    Lack of phylogeographic structure in the freshwater cyanobacterium <i>Microcystis aeruginosa</i> suggests global dispersal

    Get PDF
    Background: Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographicstructuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwatercyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography.Methodology/Principal Findings: The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNAinternal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS typeswere detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected.Conclusions/Significance: The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution

    Underwater Adhesion of Multiresponsive Complex Coacervates

    Get PDF
    International audienceMany marine organisms have developed adhesives that are able to bond under water, overcoming the challenges associated with wet adhesion. A key element in the processing of several natural underwater glues is complex coacervation, a liquid–liquid phase separation driven by complexation of oppositely charged macromolecules. Inspired by these examples, the development of a fully synthetic complex coacervate‐based adhesive is reported with an in situ setting mechanism, which can be triggered by a change in temperature and/or a change in ionic strength. The adhesive consists of a matrix of oppositely charged polyelectrolytes that are modified with thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) grafts. The adhesive, which initially starts out as a fluid complex coacervate with limited adhesion at room temperature and high ionic strength, transitions into a viscoelastic solid upon an increase in temperature and/or a decrease in the salt concentration of the environment. Consequently, the thermoresponsive chains self‐associate into hydrophobic domains and/or the polyelectrolyte matrix contracts, without inducing any macroscopic shrinking. The presence of PNIPAM favors energy dissipation by softening the material and by allowing crack blunting. The high work of adhesion, the gelation kinetics, and the easy tunability of the system make it a potential candidate for soft tissue adhesion in physiological environments
    • 

    corecore