16 research outputs found

    In mice, proteinuria and renal inflammatory responses to albumin overload are strain-dependent.

    Get PDF
    BACKGROUND: The availability of genetically modified mice has increased the need for relevant mouse models of renal disease, but widely used C57BL/6 mice often show resistance to proteinuria. 129/Sv mice are considered more sensitive to certain renal models. Albumin overload, an important model of proteinuric disease, induces marked proteinuria in rats but barely in C57BL/6 mice. We hypothesized that albumin overload would induce more proteinuria in 129S2/Sv than C57BL/6J mice. METHODS: Male and female C57BL/6J and 129S2/Sv mice received bovine serum albumin (BSA) for 11 days. Control groups received saline injections. Injected BSA was immunohistochemically localized to study intrarenal handling of overloaded protein. Renal macrophage infiltration (F4/80 immuno-staining) and glomerular ultrastructure (electron microscopy) were assessed. RESULTS: The BSA-treated groups were similarly hyperproteinemic at Day 11 (D11). Proteinuria differed widely. In C57BL/6J mice, it remained unchanged in females but significantly, though mildly, increased in males (from 3+/-1 to 8+/-2 mg/day, P < 0.05). In 129S2/Sv, proteinuria was marked in both males and females (4+/-1 to 59+/-14, and 0.6+/-0.2 to 29+/-9 mg/day, respectively, both P < 0.01). Proteinuria was accompanied by tubulo-interstitial macrophage infiltration in 129S2/Sv mice. Injected BSA was visualized within glomeruli in both strains and in the urinary space and tubules of 129S2/Sv but not C57BL/6J mice, indicating much greater glomerular leakage in the former. No glomerular macrophages or ultra-structural differences were detected. CONCLUSION: There are major strain differences in the proteinuria and renal inflammatory response of mice to albumin overload, which are not due to structural variation in the filtration barrier but possibly to functional differences in glomerular protein permeability

    Predictors of stable return-to-work in non-acute, non-specific spinal pain: low total prior sick-listing, high self prediction and young age. A two-year prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-specific spinal pain (NSP), comprising back and/or neck pain, is one of the leading disorders in long-term sick-listing. During 2000-2004, 125 Swedish primary-care patients with non-acute NSP, full-time sick-listed 6 weeks-2 years, were included in a randomized controlled trial to compare a cognitive-behavioural programme with traditional primary care. This prospective cohort study is a re-assessment of the data from the randomized trial with the 2 treatment groups considered as a single cohort. The aim was to investigate which baseline variables predict a stable return-to-work during a 2-year period after baseline: objective variables from function tests, socioeconomic, subjective and/or treatment variables. Stable return-to-work was a return-to-work lasting for at least 1 month from the start of follow-up.</p> <p>Methods</p> <p><it>Stable return-to-work </it>was the outcome variable, the above-mentioned factors were the predictive variables in multiple-logistic regression models, one per follow-up at 6, 12, 18 and 24 months after baseline. The factors from univariate analyzes with a <it>p</it>-value of at most .10 were included. The non-significant variables were excluded stepwise to yield models comprising only significant factors (<it>p </it>< .05). As the comparatively few cases made it risky to associate certain predictors with certain time-points, we finally considered the predictors which were represented in at least 3 follow-ups. They are presented with odds ratios (OR) and 95% confidence intervals.</p> <p>Results</p> <p>Three variables qualified, all of them represented in 3 follow-ups: <it>Low total prior sick-listing </it>(including all diagnoses) was the strongest predictor in 2 follow-ups, 18 and 24 months, OR 4.8 [1.9-12.3] and 3.8 [1.6-8.7] respectively, <it>High self prediction </it>(the patients' own belief in return-to-work) was the strongest at 12 months, OR 5.2 [1.5-17.5] and <it>Young age </it>(max 44 years) the second strongest at 18 months, OR 3.5 [1.3-9.1].</p> <p>Conclusions</p> <p>In primary-care patients with non-acute NSP, the strong predictors of stable return-to-work were 2 socioeconomic variables, <it>Low total prior sick-listing </it>and <it>Young age</it>, and 1 subjective variable, <it>High self-prediction</it>. Objective variables from function tests and treatment variables were non-predictors. Except for <it>Young age</it>, the predictors have previously been insufficiently studied, and so our study should widen knowledge within clinical practice.</p> <p>Trial registration</p> <p>Trial registration number for the original trial NCT00488735.</p

    A perinatal nitric oxide donor increases renal vascular resistance and ameliorates hypertension and glomerular injury in adult fawn-hooded hypertensive rats

    No full text
    Enhancing perinatal nitric oxide (NO) availability persistently reduces blood pressure in spontaneously hypertensive rats. We hypothesize that this approach can be generalized to other models of genetic hypertension, for instance those associated with renal injury. Perinatal exposure to the NO donor molsidomine was studied in fawn-hooded hypertensive (FHH) rats, a model of mild hypertension, impaired preglomerular resistance, and progressive renal injury. Perinatal molsidomine increased urinary NO metabolite excretion at 8 wk of age, i.e., 4 wk after treatment was stopped (P <0.05). Systolic blood pressure was persistently reduced after molsidomine (42-wk females: 118 +/- 3 vs. 141 +/- 5 and 36-wk males: 139 +/- 4 vs. 158 +/- 4 mmHg; both P <0.001). Perinatal treatment decreased glomerular filtration rate (P <0.05) and renal blood flow (P <0.01) and increased renal vascular resistance (P <0.05), without affecting filtration fraction, suggesting persistently increased preglomerular resistance. At 4 wk of age natriuresis was transiently increased by molsidomine (P <0.05). Molsidomine decreased glomerulosclerosis (P <0.05). Renal blood flow correlated positively with glomerulosclerosis in control (P <0.001) but not in perinatally treated FHH rats. NO dependency of renal vascular resistance was increased by perinatal molsidomine. Perinatal enhancement of NO availability can ameliorate development of hypertension and renal injury in FHH rats. Paradoxically, glomerular protection by perinatal exposure to the NO donor molsidomine may be due to persistently increased preglomerular resistance. The mechanisms by which increased perinatal NO availability can persistently reprogram kidney function and ameliorate hypertension deserve further study

    Implementation of accurate and fast DNA cytometry by confocal microscopy in 3D, Cell

    No full text
    Abstract. Background: DNA cytometry is a powerful method for measuring genomic instability. Standard approaches that measure DNA content of isolated cells may induce selection bias and do not allow interpretation of genomic instability in the context of the tissue. Confocal Laser Scanning Microscopy (CLSM) provides the opportunity to perform 3D DNA content measurements on intact cells in thick histological sections. Because the technique is technically challenging and time consuming, only a small number of usually manually selected nuclei were analyzed in different studies, not allowing wide clinical evaluation. The aim of this study was to describe the conditions for accurate and fast 3D CLSM cytometry with a minimum of user interaction to arrive at sufficient throughput for pilot clinical applications. Methods: Nuclear DNA was stained in 14 µm thick tissue sections of normal liver and adrenal stained with either YOYO-1 iodide or TO-PRO-3 iodide. Different pre-treatment strategies were evaluated: boiling in citrate buffer (pH 6.0) followed by RNase application for 1 or 18 hours, or hydrolysis. The image stacks obtained with CLSM at microscope magnifications of ×40 or ×100 were analyzed off-line using in-house developed software for semi-automated 3D fluorescence quantitation. To avoid sectioned nuclei, the top and bottom of the stacks were identified from ZX and YZ projections. As a measure of histogram quality, the coefficient of variation (CV) of the diploid peak was assessed. Results: The lowest CV (10.3%) was achieved with a protocol without boiling, with 1 hour RNase treatment and TO-PRO-3 iodide staining, and a final image recording at ×60 or ×100 magnifications. A sample size of 300 nuclei was generally achievable. By filtering the set of automatically segmented nuclei based on volume, size and shape, followed by interactive removal of the few remaining faulty objects, a single measurement was completely analyzed in approximately 3 hours. Conclusions: The described methodology allows to obtain a largely unbiased sample of nuclei in thick tissue sections using 3D DNA cytometry by confocal laser scanning microscopy within an acceptable time frame for pilot clinical applications, and with a CV small enough to resolve smaller near diploid stemlines. This provides a suitable method for 3D DNA ploidy assessment of selected rare cells based on morphologic characteristics and of clinical samples that are too small to prepare adequate cell suspensions

    Implementation of accurate and fast DNA cytometry by confocal microscopy in 3D

    No full text
    BACKGROUND: DNA cytometry is a powerful method for measuring genomic instability. Standard approaches that measure DNA content of isolated cells may induce selection bias and do not allow interpretation of genomic instability in the context of the tissue. Confocal Laser Scanning Microscopy (CLSM) provides the opportunity to perform 3D DNA content measurements on intact cells in thick histological sections. Because the technique is technically challenging and time consuming, only a small number of usually manually selected nuclei were analyzed in different studies, not allowing wide clinical evaluation. The aim of this study was to describe the conditions for accurate and fast 3D CLSM cytometry with a minimum of user interaction to arrive at sufficient throughput for pilot clinical applications. METHODS: Nuclear DNA was stained in 14 microm thick tissue sections of normal liver and adrenal stained with either YOYO-1 iodide or TO-PRO-3 iodide. Different pre-treatment strategies were evaluated: boiling in citrate buffer (pH 6.0) followed by RNase application for 1 or 18 hours, or hydrolysis. The image stacks obtained with CLSM at microscope magnifications of x40 or x100 were analyzed off-line using in-house developed software for semi-automated 3D fluorescence quantitation. To avoid sectioned nuclei, the top and bottom of the stacks were identified from ZX and YZ projections. As a measure of histogram quality, the coefficient of variation (CV) of the diploid peak was assessed. RESULTS: The lowest CV (10.3%) was achieved with a protocol without boiling, with 1 hour RNase treatment and TO-PRO-3 iodide staining, and a final image recording at x60 or x100 magnifications. A sample size of 300 nuclei was generally achievable. By filtering the set of automatically segmented nuclei based on volume, size and shape, followed by interactive removal of the few remaining faulty objects, a single measurement was completely analyzed in approximately 3 hours. CONCLUSIONS: The described methodology allows to obtain a largely unbiased sample of nuclei in thick tissue sections using 3D DNA cytometry by confocal laser scanning microscopy within an acceptable time frame for pilot clinical applications, and with a CV small enough to resolve smaller near diploid stemlines. This provides a suitable method for 3D DNA ploidy assessment of selected rare cells based on morphologic characteristics and of clinical samples that are too small to prepare adequate cell suspensions
    corecore