98 research outputs found

    Warm and hot circumstellar gas in V1647 Ori during the 2008-2009 outburst

    Get PDF
    The pre-main sequence star V1647 Ori started a new outburst in August 2008. From October 2008 to February 2009 we monitored V1647 Ori, obtaining quasi-simultaneous VLT-CRIRES near-IR spectroscopy, VLT-VISIR mid-IR spectroscopy and VLT-FORS2 optical spectroscopy. We studied the evolution of H2 and CO emission from hot and warm gas and Hα and forbidden line-emission during the initial outburst phase of V1647 Ori. Hα is observed in emission displaying P-Cygni profiles with blue-shifted absorption up to -700 km/s, suggesting the presence of a high velocity wind (Fig. 1a). [OI] emission at 6300 Å is observed displaying a blue-shifted emission shoulder, indicating the presence of material moving away from the star (Fig. 1b). We detect H2 1-0 S(1) and CO (P4 to P14 and P30-P38) ro-vibrational lines centered at the velocity of the star at all epochs (Fig. 1c & d). This strongly suggests that the H2 and CO emission originates from a disk and not from a warm outflow. The H2 1-0 S(0) and 2-1 S(1) ro-vibrational lines at 2.22 and 2.24 ÎŒm and the pure-rotational H2 0-0 S(1) and 0-0 S(2) lines at 17 and 12 ÎŒm were not detected in our spectra. Changes in the Hα and [OI] profiles and the H2 and CO emission observed do not correlate. We modeled the H2 and CO line profiles assuming emission from a flat disk in keplerian rotation with line intensity decreasing with radius (I ~ I0(R/Rmin)−α). We found that the disk of V1647 Ori is observed nearly face-on and that the line emission is produced within a fraction of an AU of the star (Fig. 1d

    CO ro-vibrational lines in HD100546: A search for disc asymmetries and the role of fluorescence

    Get PDF
    We have studied the emission of CO ro-vibrational lines in the disc around the Herbig Be star HD100546 with the final goal of using these lines as a diagnostic to understand inner disc structure in the context of planet formation. High-resolution IR spectra of CO ro-vibrational emission at eight different position angles were taken with CRIRES at the VLT. From these spectra flux tables, CO ro-vibrational line profiles, and population diagrams were produced. We have investigated variations in the line profile shapes and line strengths as a function of slit position angle. We used the thermochemical disc modelling code ProDiMo based on the chemistry, radiation field, and temperature structure of a previously published model for HD100546. Comparing observations and the model, we investigated the possibility of disc asymmetries, the excitation mechanism (UV fluorescence), the geometry, and physical conditions of the inner disc. The observed CO ro-vibrational lines are largely emitted from the inner rim of the outer disc at 10-13 AU. The line shapes are similar for all v levels and line fluxes from all vibrational levels vary only within one order of magnitude. All line profile asymmetries and variations can be explained with a symmetric disc model to which a slit correction and pointing offset is applied. Because the angular size of the CO emitting region (10-13 AU) and the slit width are comparable the line profiles are very sensitive to the placing of the slit. The model reproduces the line shapes and the fluxes of the v=1-0 lines as well as the spatial extent of the CO ro-vibrational emission. It does not reproduce the observed band ratios of 0.5-0.2 with higher vibrational bands. We find that lower gas volume densities at the surface of the inner rim of the outer disc can make the fluorescence pumping more effcient and reproduce the observed band ratios.Comment: 20 pages, 21 figure

    The composition of circumstellar gas and dust in 51 Oph

    Get PDF
    We analyze ISO archive data of the nearby bright emission-line star 51 Oph, previously classified as a proto-planetary system similar to beta Pic. The infrared spectrum reveals the presence of gas-phase emission bands of hot (approx 850 K) CO, CO_2, H_2O and NO. In addition to this, partially crystalline silicate dust is present. The solid-state bands and the energy distribution are indicative of dust that has formed recently, rather than of debris dust. The presence of hot molecular gas and the composition of the circumstellar dust are highly unusual for a young star and are reminiscent of what is found around evolved (AGB) stars, although we exclude the possibility of 51 Oph belonging to this group. We suggest several explanations for the nature of 51 Oph, including a recent episode of mass loss from a Be star, and the recent destruction of a planet-sized body around a young star.Comment: 4 pages, 3 figures, accepted by A&A (letters

    Warm gas at 50 AU in the disk around Herbig Be star HD 100546

    Full text link
    The disk atmosphere is one of the fundamental elements of theoretical models of a protoplanetary disk. However, the direct observation of the warm gas (>> 100 K) at large radius of a disk (>> 10 AU) is challenging, because the line emission from warm gas in a disk is usually dominated by the emission from an inner disk. Our goal is to detect the warm gas in the disk atmosphere well beyond 10 AU from a central star in a nearby disk system of the Herbig Be star HD 100546. We measured the excitation temperature of the vibrational transition of CO at incremental radii of the disk from the central star up to 50 AU, using an adaptive optics system combined with the high-resolution infrared spectrograph CRIRES at the VLT. The observation successfully resolved the line emission with 0".1 angular resolution, which is 10 AU at the distance of HD 100546. Population diagrams were constructed at each location of the disk, and compared with the models calculated taking into account the optical depth effect in LTE condition. The excitation temperature of CO is 400-500 K or higher at 50 AU away from the star, where the blackbody temperature in equilibrium with the stellar radiation drops as low as 90 K. This is unambiguous evidence of a warm disk atmosphere far away from the central star.Comment: 7 pages, 5 figures, A&A in pres

    Evidence for CO depletion in the inner regions of gas-rich protoplanetary disks

    Get PDF
    We investigate the physical properties and spatial distribution of Carbon Monoxide (CO) gas in the disks around the Herbig Ae/Be stars HD 97048 and HD 100546. Using high-spectral-resolution 4.588-4.715 ÎŒ\mum spectra containing fundamental CO emission taken with CRIRES on the VLT, we probe the circumstellar gas and model the kinematics of the emission lines. By using spectro-astrometry on the spatially resolved targets, we constrain the physical size of the emitting regions in the disks. We resolve, spectrally and spatially, the emission of the 13^{13}CO v(1-0) vibrational band and the 12^{12}CO v=1−0,v=2−1,v=3−2v=1-0, v=2-1, v=3-2 and v=4−3v=4-3 vibrational bands in both targets, as well as the 12^{12}CO v=5−4v=5-4 band in HD 100546. Modeling of the CO emission with a homogeneous disk in Keplerian motion, yields a best fit with an inner and outer radius of the CO emitting region of 11 and ≄\geq 100 AU for HD 97048. HD 100546 is not fit well with our model, but we derive a lower limit on the inner radius of 8 AU. The fact that gaseous [OI] emission was previously detected in both targets at significantly smaller radii suggests that CO may be effectively destroyed at small radii in the surface layers of these disksComment: v2: Letter format has been changed to Paper format; Change in the focus of the paper towards CO depletion; Major changes in text; Change of title. Submitted to A&A, 14/10/2008. Accepted by A&A, 17/04/200

    A proposed new diagnostic for Herbig disc geometry : FWHM versus J of CO ro-vibrational lines

    Get PDF
    I.K.,W.F.T., and P.W. acknowledge funding from the EU FP7-2011 under Grant Agreement No. 284405. G.v.d.p. acknowledges support from the Millennium Science Initiative (Chilean Ministry of Economy) through grant Nucleus P10-022-F and also acknowledges financial support provided by FONDECYT following grant 3140393.Aims. The CO ro-vibrational lines observed from Herbig group II discs are often seen to be broad, while the same lines observed from group I discs are often narrow. This difference is not well understood. In this paper we explore the underlying cause for this difference and provide a pathway for a better understanding of the geometry and structure of the inner discs around Herbig Ae/Be stars. Methods. High spectral resolution infrared spectra of CO ro-vibrational emission from six Herbig Ae/Be candidate stars were taken with the CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES) at the Very Large Telescope (VLT). From these spectra, we produce individual and co-added CO ro-vibrational line profiles. We investigate line profile shape differences, and we explore the full width at half maximum (FWHM) variations with J quantum number in the context of disc geometry. Furthermore, we put our new sources into the context of earlier observed sources to study a large sample. For comparison, we also investigate the FWHM variations with J of modelled CO ro-vibrational lines from two typical disc geometries produced with the thermochemical disc modelling code ProDiMo. Results. For our new observations of CO ro-vibrational lines, we find that the FWHM of individual lines are in the range of 10–60 km s-1. We find both narrow and broad single-peaked emission lines, but only Hen 2-80 displays double-peaked emission lines. For HD 250550, the FWHM of the CO lines increases with J value, indicating a radially extended emitting region, while Hen 2-80 shows a constant FWHM versus J behaviour, indicating a narrow emitting region. This qualitatively agrees with the two different modelled disc geometries. Comparing dust and gas inner disc geometries (inferred by the spectral energy distribution (SED) and CO ro-vibrational emission) for the expanded sample of observed Herbig discs, we find no clear correspondence between the SED (spectral energy distribution) groups of the sources and their inner CO radius. Conclusions. The FWHM versus J is a potential new gas diagnostic for the inner disc with, for example, a constant FWHM versus J indicating the presence of a large gas hole or gap. Models and observations both indicate the potential of this new diagnostic. Our extended sample does not fully support the previous trend where group I discs have CO ro-vibrational emission lines with small FWHM. Instead, our CO ro-vibrational data from a handful of sources indicates different inner disc geometries for the gas and dust of these sources.Publisher PDFPeer reviewe

    On the nature of XTE J0421+560/CI Cam

    Get PDF
    We present the results of the analysis of RXTE, BATSE and optical/infrared data of the 1998 outburst of the X-ray transient system XTE J0421+560 (CI Cam). The X-ray outburst shows a very fast decay (initial e-folding time ~0.5 days, slowing down to ~2.3 days). The X-ray spectrum in the 2-25 keV band is complex, softening considerably during decay and with strongly variable intrinsic absorption. A strong iron emission line is observed. No fast time variability is detected (<0.5 % rms in the 1-4096 Hz band at the outburst peak). The analysis of the optical/IR data suggests that the secondary is a B[e] star surrounded by cool dust and places the system at a distance of >~ 2 kpc. At this distance the peak 2-25 keV luminosity is ~4 x 10^37 erg/s. We compare the properties of this peculiar system with those of the Be/NS LMC transient A 0538-66 and suggest that CI Cam is of similar nature. The presence of strong radio emission during outburst indicates that the compact object is likely to be a black hole or a weakly magnetized neutron star.Comment: Accepted for publication on The Astrophysical Journal, July 199

    The structure of the protoplanetary disk surrounding three young intermediate mass stars. II. Spatially resolved dust and gas distribution

    Get PDF
    [Abridged] We present the first direct comparison of the distribution of the gas, as traced by the [OI] 6300 AA emission, and the dust, as traced by the 10 micron emission, in the protoplanetary disk around three intermediate-mass stars: HD 101412, HD 135344 B and HD 179218. N-band visibilities were obtained with VLTI/MIDI. Simple geometrical models are used to compare the dust emission to high-resolution optical spectra in the 6300 AA [OI] line of the same targets. The disks around HD 101412 and HD 135344 B appear strongly flared in the gas, but self-shadowed in the dust beyond ~ 2 AU. In both systems, the 10 micron emission is rather compact (< 2 AU) while the [OI] brightness profile shows a double peaked structure. The inner peak is strongest and is consistent with the location of the dust, the outer peak is fainter and is located at 5-10 AU. Spatially extended PAH emission is found in both disks. The disk around HD 179218 is flared in the dust. The 10 micron emission emerges from a double ring-like structure with the first ring peaking at ~ 1 AU and the second at ~ 20 AU. No dust emission is detected between ~ 3 -- 15 AU. The oxygen emission seems also to come from a flared structure, however, the bulk of this emission is produced between ~ 1 -- 10 AU. This could indicate a lack of gas in the outer disk or could be due to chemical effects which reduce the abundance of OH -- the parent molecule of the observed [OI] emission -- further away from the star. The three systems, HD 179218, HD 135344 B and HD 101412, may form an evolutionary sequence: the disk initially flared becomes flat under the combined action of gas-dust decoupling, grain growth and dust settling.Comment: Accepted for publication in A&
    • 

    corecore