4 research outputs found

    Evaluation of modeling NO<sub>2</sub> concentrations driven by satellite-derived and bottom-up emission inventories using in situ measurements over China

    No full text
    Chemical transport models together with emission inventories are widely used to simulate NO2 concentrations over China, but validation of the simulations with in situ measurements has been extremely limited. Here we use ground measurements obtained from the air quality monitoring network recently developed by the Ministry of Environmental Protection of China to validate modeling surface NO2 concentrations from the CHIMERE regional chemical transport model driven by the satellite-derived DECSO and the bottom-up MIX emission inventories. We applied a correction factor to the observations to account for the interferences of other oxidized nitrogen compounds (NOz), based on the modeled ratio of NO2 to NOz. The model accurately reproduces the spatial variability in NO2 from in situ measurements, with a spatial correlation coefficient of over 0.7 for simulations based on both inventories. A negative and positive bias is found for the simulation with the DECSO (slope= 0.74 and 0.64 for the daily mean and daytime only) and the MIX (slope= 1.3 and 1.1) inventories, respectively, suggesting an underestimation and overestimation of NOx emissions from corresponding inventories. The bias between observed and modeled concentrations is reduced, with the slope dropping from 1.3 to 1.0 when the spatial distribution of NOx emissions in the DECSO inventory is applied as the spatial proxy for the MIX inventory, which suggests an improvement of the distribution of emissions between urban and suburban or rural areas in the DECSO inventory compared to that used in the bottom-up inventory. A rough estimate indicates that the observed concentrations, from sites predominantly placed in the populated urban areas, may be 10-40 % higher than the corresponding model grid cell mean. This reduces the estimate of the negative bias of the DECSO-based simulation to the range of -30 to 0 % on average and more firmly establishes that the MIX inventory is biased high over major cities. The performance of the model is comparable over seasons, with a slightly worse spatial correlation in summer due to the difficulties in resolving the more active NOx photochemistry and larger concentration gradients in summer by the model. In addition, the model well captures the daytime diurnal cycle but shows more significant disagreement between simulations and measurements during nighttime, which likely produces a positive model bias of about 15 % in the daily mean concentrations. This is most likely related to the uncertainty in vertical mixing in the model at night.Atmospheric Remote Sensin

    Maritime NO<sub>x</sub> Emissions Over Chinese Seas Derived From Satellite Observations

    No full text
    By applying an inversion algorithm to NOx satellite observations from Ozone Monitoring Instrument, monthly NOx emissions for a 10 year period (2007 to 2016) over Chinese seas are presented for the first time. No effective regulations on NOx emissions have been implemented for ships in China, which is reflected in the trend analysis of maritime emissions. The maritime emissions display a continuous increase rate of about 20% per year until 2012 and slow down to 3% after that. The seasonal cycle of shipping emissions has regional variations, but all regions show lower emissions during winter. Simulations by an atmospheric chemistry transport model show a notable influence of maritime emissions on air pollution over coastal areas, especially in summer. The satellite-derived spatial distribution and the magnitude of maritime emissions over Chinese seas are in good agreement with bottom-up studies based on the Automatic Identification System of ships.Atmospheric Remote Sensin

    A New Divergence Method to Quantify Methane Emissions Using Observations of Sentinel-5P TROPOMI

    No full text
    We present a new divergence method to estimated methane (CH4) emissions from satellite observed mean mixing ratio of methane (XCH4) by deriving the regional enhancement of XCH4 in the Planetary Boundary Layer (PBL). The applicability is proven by comparing the estimated emissions with its known emission inventory from a 3-month GEOS-Chem simulation. When applied to TROPOspheric Monitoring Instrument observations, sources from well-known oil/gas production areas, livestock farms and wetlands in Texas become clearly visible in the emission maps. The calculated yearly averaged total CH4 emission over the Permian Basin is 3.06 (2.82, 3.78) Tg a−1 for 2019, which is consistent with previous studies and double that of EDGAR v4.3.2 for 2012. Sensitivity tests on PBL heights, on the derived regional background and on wind speeds suggest our divergence method is quite robust. It is also a fast and simple method to estimate the CH4 emissions globally.Atmospheric Remote Sensin

    Intercomparison of NO<sub>x</sub> emission inventories over East Asia

    No full text
    We compare nine emission inventories of nitrogen oxides including four satellite-derived NOx inventories and the following bottom-up inventories for East Asia: REAS (Regional Emission inventory in ASia), MEIC (Multiresolution Emission Inventory for China), CAPSS (Clean Air Policy Support System) and EDGAR (Emissions Database for Global Atmospheric Research). Two of the satellitederived inventories are estimated by using the DECSO (Daily Emission derived Constrained by Satellite Observations) algorithm, which is based on an extended Kalman filter applied to observations from OMI or from GOME-2. The other two are derived with the EnKF algorithm, which is based on an ensemble Kalman filter applied to observations of multiple species using either the chemical transport model CHASER and MIROC-chem. The temporal behaviour and spatial distribution of the inventories are compared on a national and regional scale. A distinction is also made between urban and rural areas. The intercomparison of all inventories shows good agreement in total NOx emissions over mainland China, especially for trends, with an average bias of about 20% for yearly emissions. All the inventories show the typical emission reduction of 10% during the Chinese New Year and a peak in December. Satellite-derived approaches using OMI show a summer peak due to strong emissions from soil and biomass burning in this season. Biases in NOx emissions and uncertainties in temporal variability increase quickly when the spatial scale decreases. The analyses of the differences show the importance of using observations from multiple instruments and a high spatial resolution model for the satellite-derived inventories, while for bottom-up inventories, accurate emission factors and activity information are required. The advantage of the satellite-derived approach is that the emissions are soon available after observation, while the strength of the bottom-up inventories is that they include detailed information of emissions for each source category.Atmospheric Remote Sensin
    corecore