3 research outputs found

    Multilayer films of exfoliated 2D oxide nanosheets by electrospray deposition

    Get PDF
    The potential of the electrospray deposition technique as new method to make nanosheet-based multilayer films is evaluated. Densely packed nanosheet-based films with thicknesses of 1–20 nm with rms roughnesses of 2.1–2.4 nm were fabricated on samples of 1 cm2 size with a growth rate of 0.5 nm/min. Electrosprayed Ti0.87O2 nanosheet films were successfully used as oriented growth templates for 40 nm perovskite SrRuO3 thin films grown by pulsed laser deposition. The electrospray method provides a fast and easy alternative to the more commonly used Langmuir–Blodgett (LB) deposition method for nanosheet films

    Thermochemical stability and friction properties of soft organosilica networks for solid lubrication

    Get PDF
    In view of their possible application as high temperature solid lubricants, the tribological and thermochemical properties of several organosilica networks were investigated over a range of temperatures between 25 and 580 °C. Organosilica networks, obtained from monomers with terminal and bridging organic groups, were synthesized by a sol-gel process. The influence of carbon content, crosslink density, rotational freedom of incorporated hydrocarbon groups, and network connectivity on the high temperature friction properties of the polymer was studied for condensed materials from silicon alkoxide precursors with terminating organic groups, i.e., methyltrimethoxysilane, propyltrimethoxysilane, diisopropyldimethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane and 4-biphenylyltriethoxysilane networks, as well as precursors with organic bridging groups between Si centers, i.e., 1,4-bis(triethoxysilyl)benzene and 4,4'-bis(triethoxysilyl)-1,1'-biphenyl. Pin-on-disc measurements were performed using all selected solid lubricants. It was found that materials obtained from phenyltrimethoxysilane and cyclohexyltrimethoxysilane precursors showed softening above 120 °C and performed best in terms of friction reduction, reaching friction coefficients as low as 0.01. This value is lower than that of graphite films (0.050 ± 0.005), a common bench mark for solid lubricants

    Correlated Metals Transparent Conductors with High UV to Visible Transparency on Amorphous Substrates

    Get PDF
    Correlated metals with high carrier density and strongly correlated electron effects provide an alternative route to achieve transparent conducting materials, different from the conventional degenerately doped wide-bandgap transparent conducting oxides (TCO). The extremely low electrical resistivity and high optical transparency in the ultraviolet-visible spectral range shown in 4d correlated metals present an advantage over conventional TCOs. However, most of the 4d correlated metals are grown epitaxially on single crystal substrates. Here, it has been shown that Ca2Nb3O10 nanosheets with different buffer layers promote the growth of high-quality 4d2 SrMoO3 films on fused silica substrates, overcoming the use of expensive and size-limited single-crystal substrates. The room temperature electrical resistivity of SrMoO3 is as low as 61 µΩ cm, the lowest reported value on amorphous transparent substrates to date, without compromising its high optical transmittance. 4d1 correlated metal SrNbO3 on Ca2Nb3O10 nanosheets also exhibits similarly high optical transmittance but a higher room temperature resistivity of 174 µΩ cm. These findings facilitate the use of highly conducting and transparent 4d correlated metals not only as TCOs on technologically relevant substrates for the applications in the ultraviolet-visible spectral range but also as electrodes for other oxide-based thin film technologies
    corecore