1,229 research outputs found
Mechanics of cooling liquids by forced evaporation in bubbles
Injecting a non-dissolvable gas into a saturated liquid results in
sub-cooling of the liquid due to forced evaporation into the bubble. Previous
studies assumed the rate of evaporation of liquid into the bubble to be
independent of the degree of sub-cooling. In our study we quantify the bubble
growth by direct observation using high speed imaging and prove that this
hypothesis is not true. A phenomenological model of the bubble growth as a
function of the degree of sub-cooling is developed and we find excellent
agreement between the measurements and theory. This bubble cooling process is
employed in cooling a liquid. By identification of all heat flows, we can well
describe the cool down curve using bubble cooling. Bubble cooling provides an
alternative cooling method for liquids without the use of complicated cooling
techniques
The Dutch multidisciplinary guideline osteoporosis and fracture prevention, taking a local guideline to the international arena
Background: In 2018, a grant was provided for an evidence-based guideline on osteoporosis and fracture prevention based on 10 clinically relevant questions. Methods: A multidisciplinary working group was formed with delegates from Dutch scientific and professional societies, including representatives from the patient’s organization and the Dutch Institute for Medical Knowledge. The purpose was to obtain a broad consensus among all participating societies to facilitate the implementation of the updated guideline. Results: Novel recommendations in our guideline are as follows: - In patients with an indication for DXA of the lumbar spine and hips, there is also an indication for VFA. - Directly starting with anabolic drugs (teriparatide or romosozumab) in patients with a very high fracture risk; - Directly starting with zoledronic acid in patients 75 years and over with a hip fracture (independent of DXA); - Directly starting with parenteral drugs (denosumab, teriparatide, zoledronic acid) in glucocorticoid-induced osteoporosis with very high fracture risk; - A lifelong fracture risk management, including lifestyle, is indicated from the start of the first treatment. Conclusion: In our new multidisciplinary guideline osteoporosis and fracture prevention, we developed 5 “relatively new statements” that are all a crucial step forward in the optimization of diagnosis and treatment for fracture prevention. We also developed 5 flowcharts, and we suppose that this may be helpful for individual doctors and their patients in daily practice and may facilitate implementation.</p
The Dutch multidisciplinary guideline osteoporosis and fracture prevention, taking a local guideline to the international arena
Background: In 2018, a grant was provided for an evidence-based guideline on osteoporosis and fracture prevention based on 10 clinically relevant questions. Methods: A multidisciplinary working group was formed with delegates from Dutch scientific and professional societies, including representatives from the patient’s organization and the Dutch Institute for Medical Knowledge. The purpose was to obtain a broad consensus among all participating societies to facilitate the implementation of the updated guideline. Results: Novel recommendations in our guideline are as follows: - In patients with an indication for DXA of the lumbar spine and hips, there is also an indication for VFA. - Directly starting with anabolic drugs (teriparatide or romosozumab) in patients with a very high fracture risk; - Directly starting with zoledronic acid in patients 75 years and over with a hip fracture (independent of DXA); - Directly starting with parenteral drugs (denosumab, teriparatide, zoledronic acid) in glucocorticoid-induced osteoporosis with very high fracture risk; - A lifelong fracture risk management, including lifestyle, is indicated from the start of the first treatment. Conclusion: In our new multidisciplinary guideline osteoporosis and fracture prevention, we developed 5 “relatively new statements” that are all a crucial step forward in the optimization of diagnosis and treatment for fracture prevention. We also developed 5 flowcharts, and we suppose that this may be helpful for individual doctors and their patients in daily practice and may facilitate implementation.</p
Class of exactly solvable SO(n) symmetric spin chains with matrix product ground states
We introduce a class of exactly solvable SO(n) symmetric Hamiltonians with
matrix product ground states. For an odd case, the ground state is a
translational invariant Haldane gap spin liquid state; while for an even case, the ground state is a spontaneously dimerized state with twofold
degeneracy. In the matrix product ground states for both cases, we identify a
hidden antiferromagnetic order, which is characterized by nonlocal string order
parameters. The ground-state phase diagram of a generalized SO(n) symmetric
bilinear-biquadratic model is discussed.Comment: 11 pages, 5 figure
A minimal model of an autonomous thermal motor
We consider a model of a Brownian motor composed of two coupled overdamped
degrees of freedom moving in periodic potentials and driven by two heat
reservoirs. This model exhibits a spontaneous breaking of symmetry and gives
rise to directed transport in the case of a non- vanishing interparticle
interaction strength. For strong coupling between the particles we derive an
expression for the propagation velocity valid for arbitrary periodic
potentials. In the limit of strong coupling the model is equivalent to the
B\"uttiker-Landauer model [1-3] for a single particle diffusing in an
environment with position dependent temperature. By using numerical
calculations of the Fokker-Planck equation and simulations of the Langevin
equations we study the model for arbitrary coupling, retrieving many features
of the strong coupling limit. In particular, directed transport emerges even
for symmetric potentials. For distinct heat reservoirs the heat currents are
well-defined quantities allowing a study of the motor efficiency. We show that
the optimal working regime occurs for moderate coupling. Finally, we introduce
a model with discrete phase space which captures the essential features of the
continuous model, can be solved in the limit of weak coupling, and exhibits a
larger efficiency than the continuous counterpart.Comment: Revised version. Extended discussion on the discrete model. To appear
in EP
Geographical distribution of selected and putatively neutral SNPs in Southeast Asian malaria parasites.
Loci targeted by directional selection are expected to show elevated geographical population structure relative to neutral loci, and a flurry of recent papers have used this rationale to search for genome regions involved in adaptation. Studies of functional mutations that are known to be under selection are particularly useful for assessing the utility of this approach. Antimalarial drug treatment regimes vary considerably between countries in Southeast Asia selecting for local adaptation at parasite loci underlying resistance. We compared the population structure revealed by 10 nonsynonymous mutations (nonsynonymous single-nucleotide polymorphisms [nsSNPs]) in four loci that are known to be involved in antimalarial drug resistance, with patterns revealed by 10 synonymous mutations (synonymous single-nucleotide polymorphisms [sSNPs]) in housekeeping genes or genes of unknown function in 755 Plasmodium falciparum infections collected from 13 populations in six Southeast Asian countries. Allele frequencies at known nsSNPs underlying resistance varied markedly between locations (F(ST) = 0.18-0.66), with the highest frequencies on the Thailand-Burma border and the lowest frequencies in neighboring Lao PDR. In contrast, we found weak but significant geographic structure (F(ST) = 0-0.14) for 8 of 10 sSNPs. Importantly, all 10 nsSNPs showed significantly higher F(ST) (P < 8 x 10(-5)) than simulated neutral expectations based on observed F(ST) values in the putatively neutral sSNPs. This result was unaffected by the methods used to estimate allele frequencies or the number of populations used in the simulations. Given that dense single-nucleotide polymorphism (SNP) maps and rapid SNP assay methods are now available for P. falciparum, comparing genetic differentiation across the genome may provide a valuable aid to identifying parasite loci underlying local adaptation to drug treatment regimes or other selective forces. However, the high proportion of polymorphic sites that appear to be under balancing selection (or linked to selected sites) in the P. falciparum genome violates the central assumption that selected sites are rare, which complicates identification of outlier loci, and suggests that caution is needed when using this approach
Temperley-Lieb Words as Valence-Bond Ground States
Based on the Temperley--Lieb algebra we define a class of one-dimensional
Hamiltonians with nearest and next-nearest neighbour interactions. Using the
regular representation we give ground states of this model as words of the
algebra. Two point correlation functions can be computed employing the
Temperley--Lieb relations. Choosing a spin-1/2 representation of the algebra we
obtain a generalization of the (q-deformed) Majumdar--Ghosh model. The ground
states become valence-bond states.Comment: 9 Pages, LaTeX (with included style files
Symmetry and dimension of the magnon dispersion of inorganic spin-Peierls systems
The data on the dispersion of the magnetic excitations of CuGeO_3 in the
spin-Peierls dimerized phase are analyzed. On the basis of the lattice
structure it is shown that even along the chains the character cannot be
neglected. The symmetry of the dispersion differs from the one assumed so far.
The magnetic resonance data is reinterpreted. The possibility of interchain
rather than intrachain frustration is discussed.Comment: 4 pages, Revtex, to appear in PR
- …