46 research outputs found
Haemodynamic performance of 16–20-mm extracardiac Goretex conduits in adolescent Fontan patients at rest and during simulated exercise
OBJECTIVES: To date, it is not known if 16–20-mm extracardiac conduits are outgrown during somatic growth from childhood to adolescence. This study aims to determine total cavopulmonary connection (TCPC) haemodynamics in adolescent Fontan patients at rest and during simulated exercise and to assess the relationship between conduit size and haemodynamics. METHODS: Patient-specific, magnetic resonance imaging-based computational fluid dynamic models of the TCPC were performed in 51 extracardiac Fontan patients with 16–20-mm conduits. Power loss, pressure gradient and normalized resistance were quantified in rest and during simulated exercise. The cross-sectional area (CSA) (mean and minimum) of the vessels of the TCPC was determined and normalized for flow rate (mm2/l/min). Peak (predicted) oxygen uptake was assessed. RESULTS: The median age was 16.2 years (Q1–Q3 14.0–18.2). The normalized mean conduit CSA was 35–73% smaller compared to the inferior and superior vena cava, hepatic veins and left/right pulmonary artery (all P < 0.001). The median TCPC pressure gradient was 0.7 mmHg (Q1–Q3 0.5–0.8) and 2.0 (Q1–Q3 1.4–2.6) during rest and simulated exercise, respectively. A moderate–strong inverse nonlinear relationship was present between normalized mean conduit CSA and TCPC haemodynamics in rest and exercise. TCPC pressure gradients of >_1.0 at rest and >_3.0 mmHg during simulated exercise were observed in patients with a conduit CSA <_ 45 mm2/l/min and favourable haemodynamics (<1 mmHg during both rest and exercise) in conduits >_125 mm2/l/min. Normalized TCPC resistance correlated with (predicted) peak oxygen uptake. CONCLUSIONS: Extracardiac conduits of 16–20 mm have become relatively undersized in most adolescent Fontan patients leading to suboptimal haemodynamics.</p
Reduced scan time and superior image quality with 3D flow MRI compared to 4D flow MRI for hemodynamic evaluation of the Fontan pathway
Long scan times prohibit a widespread clinical applicability of 4D flow MRI in Fontan patients. As pulsatility in the Fontan pathway is minimal during the cardiac cycle, acquiring non-ECG gated 3D flow MRI may result in a reduction of scan time while accurately obtaining time-averaged clinical parameters in comparison with 2D and 4D flow MRI. Thirty-two Fontan patients prospectively underwent 2D (reference), 3D and 4D flow MRI of the Fontan pathway. Multiple clinical parameters were assessed from time-averaged flow rates, including the right-to-left pulmonary flow distribution (main endpoint) and systemic-to-pulmonary collateral flow (SPCF). A ten-fold reduction in scan time was achieved [4D flow 15.9 min (SD 2.7 min) and 3D flow 1.6 min (SD 7.8 s), p < 0.001] with a superior signal-to-noise ratio [mean ratio of SNRs 1.7 (0.8), p < 0.001] and vessel sharpness [mean ratio 1.2 (0.4), p = 0.01] with 3D flow. Compared to 2D flow, good-excellent agreement was shown for mean flow rates (ICC 0.82-0.96) and right-to-left pulmonary flow distribution (ICC 0.97). SPCF derived from 3D flow showed good agreement with that from 4D flow (ICC 0.86). 3D flow MRI allows for obtaining time-averaged flow rates and derived clinical parameters in the Fontan pathway with good-excellent agreement with 2D and 4D flow, but with a tenfold reduction in scan time and significantly improved image quality compared to 4D flow
Stress increases intracardiac 4D flow cardiovascular magnetic resonance -derived energetics and vorticity and relates to VO2max in Fontan patients
BACKGROUND: We hypothesize that dobutamine-induced stress impacts intracardiac hemodynamic parameters and that this may be linked to decreased exercise capacity in Fontan patients. Therefore, the purpose of this study was to assess the effect of pharmacologic stress on intraventricular kinetic energy (KE), viscous energy loss (EL) and vorticity from four-dimensional (4D) Flow cardiovascular magnetic resonance (CMR) imaging in Fontan patients and to study the association between stress response and exercise capacity. METHODS: Ten Fontan patients underwent whole-heart 4D flow CMR before and during 7.5 μg/kg/min dobutamine infusion and cardiopulmonary exercise testing (CPET) on the same day. Average ventricular KE, EL and vorticity were computed over systole, diastole and the total cardiac cycle (vorticity_volavg cycle, KEavg cycle, ELavg cycle). The relation to maximum oxygen uptake (VO2 max) from CPET was tested by Pearson's correlation or Spearman's rank correlation in case of non-normality of the data. RESULTS: Dobutamine stress caused a significant 88 ± 52% increase in KE (KEavg cycle: 1.8 ± 0.5 vs 3.3 ± 0.9 mJ, P < 0.001), a significant 108 ± 49% increase in EL (ELavg cycle: 0.9 ± 0.4 vs 1.9 ± 0.9 mW, P < 0.001) and a significant 27 ± 19% increase in vorticity (vorticity_volavg cycle: 3441 ± 899 vs 4394 ± 1322 mL/s, P = 0.002). All rest-stress differences (%) were negatively correlated to VO2 max (KEavg cycle: r = - 0.83, P = 0.003; ELavg cycle: r = - 0.80, P = 0.006; vorticity_volavg cycle: r = - 0.64, P = 0.047). CONCLUSIONS: 4D flow CMR-derived intraventricular kinetic energy, viscous energy loss and vorticity in Fontan patients increase during pharmacologic stress and show a negative correlation with exercise capacity measured by VO2 max
52 Genetic Loci Influencing Myocardial Mass.
BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets