9 research outputs found

    Cardiac Renin Levels Are Not Influenced by the Amount of Resident Mast Cells

    No full text
    To investigate whether mast cells release renin in the heart, we studied renin and prorenin synthesis by such cells, using the human mast cell lines human mastocytoma 1 and LAD2, as well as fresh mast cells from mastocytosis patients. We also quantified the contribution of mast cells to cardiac renin levels in control and infarcted rat hearts. Human mastocytoma 1 cells contained and released angiotensin I-generating activity, and the inhibition of this activity by the renin inhibitor aliskiren was comparable to that of recombinant human renin. Prorenin activation with trypsin increased angiotensin I-generating activity in the medium only, suggesting release but not storage of prorenin. The adenylyl cyclase activator forskolin, the cAMP analogue 8-db-cAMP, and the degranulator compound 48/80 increased renin release without affecting prorenin. Angiotensin II blocked the forskolin-induced renin release. Angiotensin I-generating activity was undetectable in LAD2 cells and fresh mast cells. Nonperfused rat hearts contained angiotensin I-generating activity, and aliskiren blocked approximate to 70% of this activity. A 30-minute buffer perfusion washed away >70% of the aliskiren-inhibitable angiotensin I-generating activity. Prolonged buffer perfusion or compound 48/80 did not decrease cardiac angiotensin I-generating activity further or induce angiotensin I- generating activity release in the perfusion buffer. Results in infarcted hearts were identical, despite the increased mast cell number in such hearts. In conclusion, human mastocytoma 1 cells release renin and prorenin, and the regulation of this release resembles that of renal renin. However, this is not a uniform property of all mast cells. Mast cells appear an unlikely source of renin in the heart, both under normal and pathophysiological conditions. (Hypertension. 2009; 54: 315-321.

    Mast cell degranulation mediates bronchoconstriction via serotonin and not via renin release

    No full text
    To verify the recently proposed concept that mast cell-derived renin facilitates angiotensin II-induced bronchoconstriction bronchial rings from male Sprague-Dawley rats were mounted in Mulvany myographs, and exposed to the mast cell degranulator compound 48/80 (300 mu g/ml), angiotensin I. angiotensin II, bradykinin or serotonin (5-hydroxytryptamine, 5-HT), in the absence or presence of the renin inhibitor aliskiren (10 mu mol/l), the ACE inhibitor captopril (10 mu mol/l), the angiotensin II type 1 (AT(1)) receptor blocker irbesartan (1 mu mol/l), the mast cell stabilizer cromolyn (0.3 mmol/l), the 5-HT2A/2C receptor antagonist ketanserin (0.1 mu mol/l) or the alpha(1)-adrenoceptor antagonist phentolamine (1 mu mol/l). Bath fluid was collected to verify angiotensin generation. Bronchial tissue was homogenized to determine renin, angiotensinogen and serotonin content. Compound 48/80 contracted bronchi to 24 +/- 4% of the KCI-induced contraction. Ketanserin fully abolished this effect, while cromolyn reduced the contraction to 16 +/- 5%. Aliskiren, captopril, irbesartan and phentolamine did not affect this response, and the angiotensin I and II levels in the bath fluid after 48/80 exposure were below the detection limit. Angiotensin I and II equipotently contracted bronchi. Captopril shifted the angiotensin I curve approximate to 10-fold to the right, whereas irbesartan fully blocked the effect of angiotensin II. Bradykinin-induced constriction was shifted approximate to 100-fold to the left with captopril. Serotonin contracted bronchi, and ketanserin fully blocked this effect. Finally, bronchial tissue contained serotonin at micromolar levels, whereas renin and angiotensinogen were undetectable in this preparation. In conclusion, mast cell degranulation results in serotonin-induced bronchoconstriction, and is unlikely to involve renin-induced angiotensin generation. (C) 2010 Elsevier B.V. All rights reserved

    Optimum AT(1) receptor-neprilysin inhibition has superior cardioprotective effects compared with AT(1) receptor blockade alone in hypertensive rats

    No full text
    Neprilysin inhibitors prevent the breakdown of bradykinin and natriuretic peptides, promoting vasodilation and natriuresis. However, they also increase angiotensin II and endothelin-1. Here we studied the effects of a low and a high dose of the neprilysin inhibitor thiorphan on top of AT(1) receptor blockade with irbesartan versus vehicle in TGR (mREN2) 27 rats with high renin hypertension. Mean arterial blood pressure was unaffected by vehicle or thiorphan alone. Irbesartan lowered blood pressure, but after 7 days pressure started to increase again. Low-but not high-dose thiorphan prevented this rise. Only during exposure to low-dose thiorphan plus irbesartan did heart weight/body weight ratio, cardiac atrial natriuretic peptide expression, and myocyte size decrease significantly. Circulating endothelin-1 was not affected by low-dose thiorphan with or without irbesartan, but increased after treatment with high-dose thiorphan plus irbesartan. This endothelin-1 rise was accompanied by an increase in renal sodium-hydrogen exchanger 3 protein abundance, and an upregulation of constrictor vascular endothelin type B receptors. Consequently, the endothelin type B receptor antagonist BQ788 no longer enhanced endothelin-1-induced vasoconstriction (indicative of endothelin type B receptor-mediated vasodilation), but prevented it. Thus, optimal neprilysin inhibitor dosing reveals additional cardioprotective effects on top of AT(1) receptor blockade in renin-dependent hypertension

    An explorative epigenome-wide association study of plasma renin and aldosterone concentration in a Ghanaian population: the RODAM study

    Get PDF
    Background: The epigenetic regulation of the renin–angiotensin–aldosterone system (RAAS) potentially plays a role in the pathophysiology underlying the high burden of hypertension in sub-Saharan Africans (SSA). Here we report the first epigenome-wide association study (EWAS) of plasma renin and aldosterone concentrations and the aldosterone-to-renin ratio (ARR). Methods: Epigenome-wide DNA methylation was measured using the Illumina 450K array on whole blood samples of 68 Ghanaians. Differentially methylated positions (DMPs) were assessed for plasma renin concentration, aldosterone, and ARR using linear regression models adjusted for age, sex, body mass index, diabetes mellitus, hypertension, and technical covariates. Additionally, we extracted methylation loci previously associated with hypertension, kidney function, or that were annotated to RAAS-related genes and associated these with renin and aldosterone concentration. Results: We identified one DMP for renin, ten DMPs for aldosterone, and one DMP associated with ARR. Top DMPs were annotated to the PTPRN2, SKIL, and KCNT1 genes, which have been reported in relation to cardiometabolic risk factors, atherosclerosis, and sodium-potassium handling. Moreover, EWAS loci previously associated with hypertension, kidney function, or RAAS-related genes were also associated with renin, aldosterone, and ARR. Conclusion: In this first EWAS on RAAS hormones, we identified DMPs associated with renin, aldosterone, and ARR in a SSA population. These findings are a first step in understanding the role of DNA methylation in regulation of the RAAS in general and in a SSA population specifically. Replication and translational studies are needed to establish the role of these DMPs in the hypertension burden in SSA populations

    Selective phosphodiesterase 1 inhibition ameliorates vascular function, reduces inflammatory response, and lowers blood pressure in aging animals

    No full text
    Diminished nitric oxide-cGMP-mediated relaxation plays a crucial role in cardiovascular aging, leading to decreased vasodilation, vascular hypertrophy and stiffening, and ultimately, cardiovascular dysfunction. Aging is the time-related worsening of physiologic function due to complex cellular and molecular interactions, and it is at least partly driven by DNA damage. Genetic deletion of the DNA repair enzyme ERCC1 endonuclease in Ercc1D/- mice provides us an efficient tool to accelerate vascular aging, explore mechanisms, and test potential treatments. Previously, we identified the cGMP-degrading enzyme phosphodiesterase 1 as a potential treatment target in vascular aging. In the present study, we studied the effect of acute and chronic treatment with ITI-214, a selective phosphodiesterase 1 inhibitor on vascular aging features in Ercc1D/- mice. Compared with wild-type mice, Ercc1D/- mice at the age of 14 weeks showed decreased reactive hyperemia, diminished endothelium-dependent and -independent responses of arteries in organ baths, carotid wall hypertrophy, and elevated circulating levels of inflammatory cytokines. Acute ITI-214 treatment in organ baths restored the arterial endothelium-independent vasodilation in Ercc1D/- mice. An 8-week treatment with 100 mg/kg per day ITI-214 improved endothelium-independent relaxation in both aorta and coronary arteries, at least partly restored the diminished reactive hyperemia, lowered the systolic and diastolic blood pressure, normalized the carotid hypertrophy, and ameliorated inflammatory responses exclusively in Ercc1D/- mice. These findings suggest phosphodiesterase 1 inhibition would provide a powerful tool for nitric oxide-cGMP augmentation and have significant therapeutic potential to battle arteriopathy related to aging

    No evidence for brain renin-angiotensin system activation during DOCA-salt hypertension

    No full text
    Brain renin–angiotensin system (RAS) activation is thought to mediate deoxycorticosterone acetate (DOCA)-salt hypertension, an animal model for human primary hyperaldosteronism. Here, we determined whether brainstem angiotensin II is generated from locally synthesized angiotensinogen and mediates DOCA-salt hypertension. To this end, chronic DOCA-salt-hypertensive rats were treated with liver-directed siRNA targeted to angiotensinogen, the angiotensin II type 1 receptor antagonist valsartan, or the mineralocorticoid receptor antagonist spironolactone (n = 6–8/group). We quantified circulating angiotensinogen and renin by enzyme-kinetic assay, tissue angiotensinogen by Western blotting, and angiotensin metabolites by LC-MS/MS. In rats without DOCA-salt, circulating angiotensin II was detected in all rats, whereas brainstem angiotensin II was detected in 5 out of 7 rats. DOCA-salt increased mean arterial pressure by 19 +− 1 mmHg and suppressed circulating renin and angiotensin II by >90%, while brainstem angiotensin II became undetectable in 5 out of 7 rats (<6 fmol/g). Gene silencing of liver angiotensinogen using siRNA lowered circulating angiotensinogen by 97 +− 0.3%, and made brainstem angiotensin II undetectable in all rats (P<0.05 vs. non-DOCA-salt), although brainstem angiotensinogen remained intact. As expected for this model, neither siRNA nor valsartan attenuated the hypertensive response to DOCA-salt, whereas spironolactone normalized blood pressure and restored brain angiotensin II together with circulating renin and angiotensin II. In conclusion, despite local synthesis of angiotensinogen in the brain, brain angiotensin II depended on circulating angiotensinogen. That DOCA-salt suppressed circulating and brain angiotensin II in parallel, while spironolactone simultaneously increased brain angiotensin II and lowered blood pressure, indicates that DOCA-salt hypertension is not mediated by brain RAS activation

    A low aldosterone/renin ratio and high soluble ACE2 associate with COVID-19 severity

    Get PDF
    BACKGROUND: The severity of COVID-19 after SARS-CoV-2 infection is unpredictable. Angiotensin-converting enzyme-2 (ACE2) is the receptor responsible for coronavirus binding, while subsequent cell entry relies on priming by the serine protease TMPRSS2 (transmembrane protease, serine 2). Although renin-angiotensin-aldosterone-system (RAAS) blockers have been suggested to upregulate ACE2, their use in COVID-19 patients is now considered well tolerated. The aim of our study was to investigate parameters that determine COVID-19 severity, focusing on RAAS-components and variation in the genes encoding for ACE2 and TMPRSS2. METHODS: Adult patients hospitalized due to SARS-CoV-2 infection between May 2020 and October 2020 in the Haga Teaching Hospital were included, and soluble ACE2 (sACE2), renin, aldosterone (in heparin plasma) and polymorphisms in the ACE2 and TMPRSS2 genes (in DNA obtained from EDTA blood) were determined. MEASUREMENTS AND MAIN RESULTS: Out of the 188 patients who were included, 60 were defined as severe COVID-19 (ICU and/or death). These patients more often used antidiabetic drugs, were older, had higher renin and sACE2 levels, lower aldosterone levels and a lower aldosterone/renin ratio. In addition, they displayed the TMPRSS2-rs2070788 AA genotype less frequently. No ACE2 polymorphism-related differences were observed. Multivariate regression analysis revealed independent significance for age, sACE2, the aldosterone/renin ratio, and the TMPRSS2 rs2070788 non-AA genotype as predictors of COVID-19 severity, together yielding a C-index of 0.79. Findings were independent of the use of RAAS blockers. CONCLUSION: High sACE2, a low aldosterone/renin ratio and having the TMPRSS2 rs2070788 non-AA genotype are novel independent determinants that may help to predict COVID-19 disease severity. TRIAL REGISTRATION: retrospectively registered
    corecore