82 research outputs found

    Educational paper: Defects in number and function of neutrophilic granulocytes causing primary immunodeficiency

    Get PDF
    The neutrophilic granulocyte (neutrophil) is the most important cellular component of the innate immune system. A total absence of neutrophils or a significant decrease in their number leads to severe immunodeficiency. A mature neutrophil, released from the bone marrow, should be able to migrate from the blood towards the tissues, following a chemotactic gradient to a pathogen. In order to be neutralized, this pathogen has to be recognized, phagocytosed, and destroyed by lytic enzymes contained in the neutrophil's granules and reactive oxygen species formed by the enzyme complex NADPH oxidase. Rare genetic defects leading to the loss of each one of these biological properties of the neutrophil have been described and are associated with immunodeficiency. This review provides a summary of the normal development and biological functions of neutrophils and describes the diseases caused by defects in neutrophil number and function

    Nailfold capillary scleroderma pattern may be associated with disease damage in childhood-onset systemic lupus erythematosus:important lessons from longitudinal follow-up

    Get PDF
    OBJECTIVES: To observe if capillary patterns in childhood-onset SLE (cSLE) change over time and find associations between a capillary scleroderma pattern with disease activity, damage or scleroderma-like features. METHODS: Clinical and (yearly) capillaroscopy data from a longitudinal cohort of patients with cSLE (minimum of four Systemic Lupus International Collaborating Clinics (SLICC) criteria, onset <18 years) were analysed. Disease activity was measured by Systemic Lupus Erythematosus Activity Index (SLEDAI) and disease damage by SLICC Damage Index. A scleroderma pattern was defined according to the ‘fast track algorithm’ from the European League Against Rheumatism Study Group on Microcirculation in Rheumatic Diseases. An abnormal capillary pattern, not matching a scleroderma pattern, was defined as ‘microangiopathy’. RESULTS: Our cohort consisted of 53 patients with cSLE with a median disease onset of 14 years (IQR 12.5–15.5 years), median SLEDAI score at diagnosis was 11 (IQR 8–16), median SLEDAI at follow-up was 2 (IQR 1–6). A scleroderma pattern (ever) was seen in 18.9%, while only 13.2% of patients had a normal capillary pattern. Thirty-three patients had follow-up capillaroscopy of which 21.2% showed changes in type of capillary pattern over time. Type of capillary pattern was not associated with disease activity. Raynaud’s phenomenon (ever) was equally distributed among patients with different capillaroscopy patterns (p=0.26). Anti-ribonucleoprotein antibodies (ever) were significantly more detected (Χ(2), p=0.016) in the scleroderma pattern subgroup (n=7 of 10, 70%). Already 5 years after disease onset, more than 50% of patients with a scleroderma pattern had SLE-related disease damage (HR 4.5, 95% CI 1.1 to 18.8, p=0.034), but they did not develop clinical features of systemic sclerosis at follow-up. Number of detected fingers with a scleroderma pattern was similar between cSLE, juvenile systemic sclerosis and juvenile undifferentiated connective tissue disease. CONCLUSION: This longitudinal study shows that the majority of capillary patterns in cSLE are abnormal and they can change over time. Irrespective of disease activity, a capillary scleroderma pattern in cSLE may be associated with higher risk of SLE-related disease damage

    Mutationen im PTS-Gen und mögliche Auswirkungen auf Funktion und Struktur der 6-Pyruvoyl-Tetrahydropterin-Synthase

    Get PDF
    Background: Research on Juvenile Idiopathic Arthritis (JIA) should support patients, caregivers/parents (carers) and clinicians to make important decisions in the consulting room and eventually to improve the lives of patients with JIA. Thus far these end-users of JIA-research have rarely been involved in the prioritisation of future research. Main body: Dutch organisations of patients, carers and clinicians will collaboratively develop a research agenda for JIA, following the James Lind Alliance (JLA) methodology. In a 'Priority Setting Partnership' (PSP), they will gradually establish a top 10 list of the most important unanswered research questions for JIA. In this process the input from clinicians, patients and their carers will be equally valued. Additionally, focus groups will be organised to involve young people with JIA. The involvement of all contributors will be monitored and evaluated. In this manner, the project will contribute to the growing body of literature on how to involve young people in agenda setting in a meaningful way. Conclusion: A JIA research agenda established through the JLA method and thus co-created by patients, carers and clinicians will inform researchers and research funders about the most important research questions for JIA. This will lead to research that really matters.</p

    Nasal DNA methylation at three CpG sites predicts childhood allergic disease

    Get PDF
    Childhood allergic diseases, including asthma, rhinitis and eczema, are prevalent conditions that share strong genetic and environmental components. Diagnosis relies on clinical history and measurements of allergen-specific IgE. We hypothesize that a multi-omics model could accurately diagnose childhood allergic disease. We show that nasal DNA methylation has the strongest predictive power to diagnose childhood allergy, surpassing blood DNA methylation, genetic risk scores, and environmental factors. DNA methylation at only three nasal CpG sites classifies allergic disease in Dutch children aged 16 years well, with an area under the curve (AUC) of 0.86. This is replicated in Puerto Rican children aged 9-20 years (AUC 0.82). DNA methylation at these CpGs additionally detects allergic multimorbidity and symptomatic IgE sensitization. Using nasal single-cell RNA-sequencing data, these three CpGs associate with influx of T cells and macrophages that contribute to allergic inflammation. Our study suggests the potential of methylation-based allergy diagnosis

    Diagnosis of childhood febrile illness using a multi-class blood RNA molecular signature

    Full text link
    Background: Appropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood. Methods: A multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a ‘‘cost’’ weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identifiedwas further validated in a new RNA sequencing dataset comprising 411 febrile children. Findings: We identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort andbenchmarked against existingdichotomousRNA signatures. Conclusions: Our data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis. Funding: European Union’s Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC

    Dutch juvenile idiopathic arthritis patients, carers and clinicians create a research agenda together following the James Lind Alliance method: A study protocol

    Get PDF
    Background: Research on Juvenile Idiopathic Arthritis (JIA) should support patients, caregivers/parents (carers) and clinicians to make important decisions in the consulting room and eventually to improve the lives of patients with JIA. Thus far these end-users of JIA-research have rarely been involved in the prioritisation of future research. Main body: Dutch organisations of patients, carers and clinicians will collaboratively develop a research agenda for JIA, following the James Lind Alliance (JLA) methodology. In a 'Priority Setting Partnership' (PSP), they will gradually establish a top 10 list of the most important unanswered research questions for JIA. In this process the input from clinicians, patients and their carers will be equally valued. Additionally, focus groups will be organised to involve young people with JIA. The involvement of all contributors will be monitored and evaluated. In this manner, the project will contribute to the growing body of literature on how to involve young people in agenda setting in a meaningful way. Conclusion: A JIA research agenda established through the JLA method and thus co-created by patients, carers and clinicians will inform researchers and research funders about the most important research questions for JIA. This will lead to research that really matters

    Nasal DNA methylation at three CpG sites predicts childhood allergic disease

    Get PDF
    Childhood allergic diseases, including asthma, rhinitis and eczema, are prevalent conditions that share strong genetic and environmental components. Diagnosis relies on clinical history and measurements of allergen-specific IgE. We hypothesize that a multi-omics model could accurately diagnose childhood allergic disease. We show that nasal DNA methylation has the strongest predictive power to diagnose childhood allergy, surpassing blood DNA methylation, genetic risk scores, and environmental factors. DNA methylation at only three nasal CpG sites classifies allergic disease in Dutch children aged 16 years well, with an area under the curve (AUC) of 0.86. This is replicated in Puerto Rican children aged 9-20 years (AUC 0.82). DNA methylation at these CpGs additionally detects allergic multimorbidity and symptomatic IgE sensitization. Using nasal single-cell RNA-sequencing data, these three CpGs associate with influx of T cells and macrophages that contribute to allergic inflammation. Our study suggests the potential of methylation-based allergy diagnosis

    Diagnosis of childhood febrile illness using a multi-class blood RNA molecular signature.

    Get PDF
    BackgroundAppropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood.MethodsA multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a "cost" weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identified was further validated in a new RNA sequencing dataset comprising 411 febrile children.FindingsWe identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort and benchmarked against existing dichotomous RNA signatures.ConclusionsOur data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis.FundingEuropean Union's Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC
    • …
    corecore