12 research outputs found

    Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients

    Get PDF
    Background and Aims Lynch Syndrome (LS) is caused by pathogenic germline variants in one of the mismatch repair (MMR) genes. However, up to 60% of MMR-deficient colorectal cancer cases are categorized as suspected Lynch Syndrome (sLS) because no pathogenic MMR germline variant can be identified, which leads to difficulties in clinical management. We therefore analyzed the genomic regions of 15 CRC susceptibility genes in leukocyte DNA of 34 unrelated sLS patients and 11 patients with MLH1 hypermethylated tumors with a clear family history. Methods Using targeted next-generation sequencing, we analyzed the entire non-repetitive genomic sequence, including intronic and regulatory sequences, of 15 CRC susceptibility genes. In addition, tumor DNA from 28 sLS patients was analyzed for somatic MMR variants. Results Of 1979 germline variants found in the leukocyte DNA of 34 sLS patients, one was a pathogenic variant (MLH1 c.1667+1delG). Leukocyte DNA of 11 patients with MLH1 hypermethylated tumors was negative for pathogenic germline variants in the tested CRC susceptibility genes and for germline MLH1 hypermethylation. Somatic DNA analysis of 28 sLS tumors identified eight (29%) cases with two pathogenic somatic variants, one with a VUS predicted to pathogenic and LOH, and nine cases (32%) with one pathogenic somatic variant (n = 8) or one VUS predicted to be pathogenic (n = 1). Conclusions This is the first study in sLS patients to include the entire genomic sequence of CRC susceptibility genes. An underlying somatic or germline MMR gene defect was identified in ten of 34 sLS patients (29%). In the remaining sLS patients, the underlying genetic defect explaining the MMRdeficiency in their tumors might be found outside the genomic regions harboring the MMR and other known CRC susceptibility genes

    Targeting glutaminolysis in chondrosarcoma in context of the IDH1/2 mutation

    No full text
    Introduction: Chondrosarcoma is a malignant cartilage-forming bone tumour in which mutations in IDH1 and IDH2 frequently occur. Previous studies suggest an increased dependency on glutaminolysis in IDH1/2 mutant cells, which resulted in clinical trials with the drugs CB-839, metformin and chloroquine. In this study, the preclinical rationale for using these drugs as a treatment for chondrosarcoma was evaluated. Methods: Expression of glutaminase was determined in 120 cartilage tumours by immunohistochemistry. Ten chondrosarcoma cell lines were treated with the metabolic compounds CB-849, metformin, phenformin (lipophilic analogue of metformin) and chloroquine. Results: A difference in glutaminase expression levels between the different tumour grades (p = 0.001, one-way ANOVA) was identified, with the highest expression observed in high-grade chondrosarcomas. Treatment with CB-839, metformin, phenformin or chloroquine revealed that chondrosarcoma cell lines are sensitive to glutaminolysis inhibition. Metformin and phenformin decreased mTOR activity in chondrosarcoma cells, and metformin decreased LC3B-II levels, which is counteracted by chloroquine. Conclusion: Targeting glutaminolysis with CB-839, metformin, phenformin or chloroquine is a potential therapeutic strategy for a subset of high-grade chondrosarcomas, irrespective of the presence or absence of an IDH1/2 mutation

    Multimodal profiling of chordoma immunity reveals distinct immune contextures

    No full text
    Background Chordomas are rare cancers from the axial skeleton which present a challenging clinical management with limited treatment options due to their anatomical location. In recent years, a few clinical trials demonstrated that chordomas can respond to immunotherapy. However, an in-depth portrayal of chordoma immunity and its association with clinical parameters is still lacking.Methods We present a comprehensive characterization of immunological features of 76 chordomas through application of a multimodal approach. Transcriptomic profiling of 20 chordomas was performed to inform on the activity of immune-related genes through the immunologic constant of rejection (ICR) signature. Multidimensional immunophenotyping through imaging mass cytometry was applied to provide insights in the different immune contextures of 32 chordomas. T cell infiltration was further evaluated in all 76 patients by means of multispectral immunofluorescence and then associated with clinical parameters through univariate and multivariate Cox proportional hazard models as well as Kaplan-Meier estimates. Moreover, distinct expression patterns of human leukocyte antigen (HLA) class I were assessed by immunohistochemical staining in all 76 patients. Finally, clonal enrichment of the T cell receptor (TCR) was sought through profiling of the variable region of TCRB locus of 24 patients.Results Chordomas generally presented an immune “hot” microenvironment in comparison to other sarcomas, as indicated by the ICR transcriptional signature. We identified two distinct groups of chordomas based on T cell infiltration which were independent from clinical parameters. The highly infiltrated group was further characterized by high dendritic cell infiltration and the presence of multicellular immune aggregates in tumors, whereas low T cell infiltration was associated with lower overall cell densities of immune and stromal cells. Interestingly, patients with higher T cell infiltration displayed a more pronounced clonal enrichment of the TCR repertoire compared with those with low T cell counts. Furthermore, we observed that the majority of chordomas maintained HLA class I expression.Conclusion Our findings shed light on the natural immunity against chordomas through the identification of distinct immune contextures. Understanding their immune landscape could guide the development and application of immunotherapies in a tailored manner, ultimately leading to an improved clinical outcome for patients with chordoma

    Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients

    No full text
    BACKGROUND AND AIMS: Lynch Syndrome (LS) is caused by pathogenic germline variants in one of the mismatch repair (MMR) genes. However, up to 60% of MMR-deficient colorectal cancer cases are categorized as suspected Lynch Syndrome (sLS) because no pathogenic MMR germline variant can be identified, which leads to difficulties in clinical management. We therefore analyzed the genomic regions of 15 CRC susceptibility genes in leukocyte DNA of 34 unrelated sLS patients and 11 patients with MLH1 hypermethylated tumors with a clear family history. METHODS: Using targeted next-generation sequencing, we analyzed the entire non-repetitive genomic sequence, including intronic and regulatory sequences, of 15 CRC susceptibility genes. In addition, tumor DNA from 28 sLS patients was analyzed for somatic MMR variants. RESULTS: Of 1979 germline variants found in the leukocyte DNA of 34 sLS patients, one was a pathogenic variant (MLH1 c.1667+1delG). Leukocyte DNA of 11 patients with MLH1 hypermethylated tumors was negative for pathogenic germline variants in the tested CRC susceptibility genes and for germline MLH1 hypermethylation. Somatic DNA analysis of 28 sLS tumors identified eight (29%) cases with two pathogenic somatic variants, one with a VUS predicted to pathogenic and LOH, and nine cases (32%) with one pathogenic somatic variant (n = 8) or one VUS predicted to be pathogenic (n = 1). CONCLUSIONS: This is the first study in sLS patients to include the entire genomic sequence of CRC susceptibility genes. An underlying somatic or germline MMR gene defect was identified in ten of 34 sLS patients (29%). In the remaining sLS patients, the underlying genetic defect explaining the MMRdeficiency in their tumors might be found outside the genomic regions harboring the MMR and other known CRC susceptibility genes

    Inhibition of Bcl-2 family members sensitises soft tissue leiomyosarcomas to chemotherapy

    No full text
    BACKGROUND: Leiomyosarcoma is an aggressive soft tissue sarcoma with a 5-year survival rate of 15 to 60%. Treatment options for inoperable or metastatic patients are limited owing to frequent resistance of tumours to chemotherapy and radiation. In this study, we hypothesised that antiapoptotic Bcl-2 family proteins might contribute to leiomyosarcoma chemoresistance and therefore inhibition of Bcl-2 family proteins might sensitise leiomyosarcomas to conventional chemotherapy. METHODS: Expression of the Bcl-2 family proteins Bcl-xL, Bcl-w and Bcl-2 was investigated using immunohistochemistry on a tissue microarray containing 43 leiomyosarcomas. Furthermore, we investigated whether ABT-737, a potent BH3 mimetic, sensitises leiomyosarcoma cells to doxorubicin treatment in vitro. RESULTS: Seventy-seven per cent, 84% and 42% of leiomyosarcomas demonstrated high expression of Bcl-2, Bcl-xL and Bcl-w, respectively. Single-agent treatment with ABT-737 resulted in a minor reduction of cell viability. However, combination treatment of ABT-737 and doxorubicin revealed synergism in all four cell lines, by inducing apoptosis. CONCLUSIONS: In conclusion, Bcl-2 family proteins contribute to soft tissue leiomyosarcoma chemoresistance. Antiapoptotic proteins are highly expressed in leiomyosarcoma of soft tissue, and inhibition of these proteins using a BH3 mimetic increases leiomyosarcoma sensitivity to doxorubicin
    corecore