3,327 research outputs found

    N=8 Supergravity on the Light Cone

    Full text link
    We construct the generating functional for the light-cone superfield amplitudes in a chiral momentum superspace. It generates the n-point particle amplitudes which on shell are equivalent to the covariant ones. Based on the action depending on unconstrained light-cone chiral scalar superfield, this functional provides a regular d=4 QFT path integral derivation of the Nair-type amplitude constructions. By performing a Fourier transform into the light-cone chiral coordinate superspace we find that the quantum corrections to the superfield amplitudes with n legs are non-local in transverse directions for the diagrams with the number of loops smaller than n(n-1)/2 +1. This suggests the reason why UV infinities, which are proportional to local vertices, cannot appear at least before 7 loops in the light-cone supergraph computations. By combining the E7 symmetry with the supersymmetric recursion relations we argue that the light-cone supergraphs predict all loop finiteness of d=4 N=8 supergravity.Comment: 38

    Optimal Tradeoff Between Exposed and Hidden Nodes in Large Wireless Networks

    Get PDF
    Wireless networks equipped with the CSMA protocol are subject to collisions due to interference. For a given interference range we investigate the tradeoff between collisions (hidden nodes) and unused capacity (exposed nodes). We show that the sensing range that maximizes throughput critically depends on the activation rate of nodes. For infinite line networks, we prove the existence of a threshold: When the activation rate is below this threshold the optimal sensing range is small (to maximize spatial reuse). When the activation rate is above the threshold the optimal sensing range is just large enough to preclude all collisions. Simulations suggest that this threshold policy extends to more complex linear and non-linear topologies

    Formation and evolution of dwarf early-type galaxies in the Virgo cluster II. Kinematic Scaling Relations

    Get PDF
    We place our sample of 18 Virgo dwarf early-type galaxies (dEs) on the V-K - velocity dispersion, Faber-Jackson, and Fundamental Plane (FP) scaling relations for massive early-type galaxies (Es). We use a generalized velocity dispersion, which includes rotation, to be able to compare the location of both rotationally and pressure supported dEs with those of early and late-type galaxies. We find that dEs seem to bend the Faber-Jackson relation of Es to lower velocity dispersions, being the link between Es and dwarf spheroidal galaxies (dSphs). Regarding the FP relation, we find that dEs are significantly offset with respect to massive hot stellar systems, and re-casting the FP into the so-called kappa-space suggests that this offset is related to dEs having a total mass-to-light ratio higher than Es but still significantly lower than dSph galaxies. Given a stellar mass-to-light ratio based on the measured line indices of dEs, the FP offset allows us to infer that the dark matter fraction within the half light radii of dEs is on average >~ 42% (uncertainties of 17% in the K band and 20% in the V band), fully consistent with an independent estimate in an earlier paper in this series. We also find that dEs in the size-luminosity relation in the near-infrared, like in the optical, are offset from early-type galaxies, but seem to be consistent with late-type galaxies. We thus conclude that the scaling relations show that dEs are different from Es, and that they further strengthen our previous findings that dEs are closer to and likely formed from late-type galaxies.Comment: 14 pages, 9 figures, 2 appendixes. Accepted for publication in A&

    The Dirichlet Obstruction in AdS/CFT

    Full text link
    The obstruction for a perturbative reconstruction of the five-dimensional bulk metric starting from the four-dimensional metric at the boundary,that is, the Dirichlet problem, is computed in dimensions 6d106\leq d\leq 10 and some comments are made on its general structure and, in particular, on its relationship with the conformal anomaly, which we compute in dimension d=8d=8.Comment: 13 pages, references added (this paper supersedes hep-th/0206140, "A Note on the Bach Tensor in AdS/CFT", which has been withdrawn

    Schwarzschild models of the Sculptor dSph galaxy

    Get PDF
    We have developed a spherically symmetric dynamical model of a dwarf spheroidal galaxy using the Schwarzschild method. This type of modelling yields constraints both on the total mass distribution (e.g. enclosed mass and scale radius) as well as on the orbital structure of the system modelled (e.g. velocity anisotropy). Therefore not only can we derive the dark matter content of these systems, but also explore possible formation scenarios. Here we present preliminary results for the Sculptor dSph. We find that the mass of Sculptor within 1kpc is 8.5\times10^(7\pm0.05) M\odot, its anisotropy profile is tangentially biased and slightly more isotropic near the center. For an NFW profile, the preferred concentration (~15) is compatible with cosmological models. Very cuspy density profiles (steeper than NFW) are strongly disfavoured for Sculptor.Comment: 2 pages, 4 figures, to appear in the proceedings of "Assembling the Puzzle of the Milky Way", Le Grand Bornand (Apr. 17-22, 2011

    Slipping friction of an optically and magnetically manipulated microsphere rolling at a glass-water interface

    Full text link
    The motion of submerged magnetic microspheres rolling at a glass-water interface has been studied using magnetic rotation and optical tweezers combined with bright-field microscopy particle tracking techniques. Individual microspheres of varying surface roughness were magnetically rotated both in and out of an optical trap to induce rolling, along either plain glass cover slides or glass cover slides functionalized with polyethylene glycol. It has been observed that the manipulated microspheres exhibited nonlinear dynamic rolling-while-slipping motion characterized by two motional regimes: At low rotational frequencies, the speed of microspheres free-rolling along the surface increased proportionately with magnetic rotation rate; however, a further increase in the rotation frequency beyond a certain threshold revealed a sharp transition to a motion in which the microspheres slipped with respect to the external magnetic field resulting in decreased rolling speeds. The effects of surface-microsphere interactions on the position of this threshold frequency are posed and investigated. Similar experiments with microspheres rolling while slipping in an optical trap showed congruent results.Comment: submitted to Journal of Applied Physics, 11 figure

    The pupil near response is short lasting and intact in virtual reality head mounted displays

    Get PDF
    The pupil of the eye constricts when moving focus from an object further away to an object closer by. This is called the pupil near response, which typically occurs together with accommodation and vergence responses. When immersed in virtual reality mediated through a head-mounted display, this triad is disrupted by the vergence-accommodation conflict. However, it is not yet clear if the disruption also affects the pupil near response. Two experiments were performed to assess this. The first experiment had participants follow a target that first appeared at a far position and then moved to either a near position (far-to-near; FN) or to another far position (far-to-far; FF). The second experiment had participants follow a target that jumped between five positions, which was repeated at several distances. Experiment 1 showed a greater pupil constriction amplitude for FN trials, compared to FF trials, suggesting that the pupil near response is intact in head-mounted display mediated virtual reality. Experiment 2 did not find that average pupil dilation differed when fixating targets at different distances, suggesting that the pupil near response is transient and does not result in sustained pupil size changes
    corecore