5 research outputs found

    Comparing the Efficacy of Dorsal Root Ganglion Stimulation With Conventional Medical Management in Patients With Chronic Postsurgical Inguinal Pain:Post Hoc Analyzed Results of the SMASHING Study

    Get PDF
    Objectives: Approximately 10% of patients who undergo inguinal hernia repair or Pfannenstiel incision develop chronic (&gt; three months) postsurgical inguinal pain (PSIP). If medication or peripheral nerve blocks fail, a neurectomy is the treatment of choice. However, some patients do not respond to this treatment. In such cases, stimulation of the dorsal root ganglion (DRG) appears to significantly reduce chronic PSIP in selected patients. Materials and Methods: In this multicenter, randomized controlled study, DRG stimulation was compared with conventional medical management (CMM) (noninvasive treatments, such as medication, transcutaneous electric neurostimulation, and rehabilitation therapy) in patients with PSIP that was resistant to a neurectomy. Patients were recruited at a tertiary referral center for groin pain (SolviMáx, Eindhoven, The Netherlands) between March 2015 and November 2016. Suitability for implantation was assessed according to the Dutch Neuromodulation Association guidelines. The sponsor discontinued the study early owing to slow enrollment. Of 78 planned patients, 18 were randomized (DRG and CMM groups each had nine patients). Six patients with CMM (67%) crossed over to DRG stimulation at the six-month mark. Results: Fifteen of the 18 patients met the six-month primary end point with a complete data set for a per-protocol analysis. Three patients with DRG stimulation had a negative trial and were lost to follow-up. The average pain reduction was 50% in the DRG stimulation and crossover group (from 6.60 ± 1.24 to 3.28 ± 2.30, p = 0.0029). Conversely, a 13% increase in pain was observed in patients with CMM (from 6.13 ± 2.24 to 6.89 ± 1.24, p = 0.42). Nine patients with DRG stimulation experienced a total of 19 adverse events, such as lead dislocation and pain at the implantation site. Conclusions: DRG stimulation is a promising effective therapy for pain relief in patients with PSIP resistant to conventional treatment modalities; larger studies should confirm this. The frequency of side effects should be a concern in a new study. Clinical Trial Registration: The Clinicaltrials.gov registration number for the study is NCT02349659.</p

    Durability of Evoked Compound Action Potential (ECAP)-Controlled, Closed-Loop Spinal Cord Stimulation (SCS) in a Real-World European Chronic Pain Population

    Get PDF
    Introduction: Closed-loop spinal cord stimulation (CL-SCS) is a recently introduced system that records evoked compound action potentials (ECAPs) from the spinal cord elicited by each stimulation pulse and uses this information to automatically adjust the stimulation strength in real time, known as ECAP-controlled SCS. This innovative system compensates for fluctuations in the distance between the epidural leads and the spinal cord by maintaining the neural response (ECAP) at a predetermined target level. This data collection study was designed to assess the performance of the first CL-SCS system in a real-world setting under normal conditions of use in multiple European centers. The study analyzes and presents clinical outcomes and electrophysiological and device data and compares these findings with those reported in earlier pre-market studies of the same system. Methods: This prospective, multicenter, observational study was conducted in 13 European centers and aimed to gather electrophysiological and device data. The study focused on the real-world application of this system in treating chronic pain affecting the trunk and/or limbs, adhering to standard conditions of use. In addition to collecting and analyzing basic demographic information, the study presents data from the inaugural patient cohort permanently implanted at multiple European centers. Results: A significant decrease in pain intensity was observed for overall back or leg pain scores (verbal numerical rating score [VNRS]) between baseline (mean ± standard error of the mean [SEM]; n = 135; 8.2 ± 0.1), 3 months (n = 93; 2.3 ± 0.2), 6 months (n = 82; 2.5 ± 0.3), and 12 months (n = 76; 2.5 ± 0.3). Comparison of overall pain relief (%) to the AVALON and EVOKE studies showed no significant differences at 3 and 12 months between the real-world data release (RWE; 71.3%; 69.6%) and the AVALON (71.2%; 73.6%) and EVOKE (78.1%; 76.7%) studies. Further investigation was undertaken to objectively characterize the physiological parameters of SCS therapy in this cohort using the metrics of percent time above ECAP threshold (%), dose ratio, and dose accuracy (µV), according to previously described methods. Results showed that a median of 90% (40.7–99.2) of stimuli were above the ECAP threshold, with a dose ratio of 1.3 (1.1–1.4) and dose accuracy of 4.4 µV (0.0–7.1), based on data from 236, 230, and 254 patients, respectively. Thus, across all three metrics, the majority of patients had objective therapy metrics corresponding to the highest levels of pain relief in previously reported studies (usage over threshold &gt; 80%, dose ratio &gt; 1.2, and error &lt; 10 µV). Conclusions: In conclusion, this study provides valuable insights into the real-world application of the ECAP-controlled CL-SCS system, highlighting its potential for maintaining effective pain relief and objective neurophysiological therapy metrics at levels seen in randomized control trials, and potential for quantifying patient burden associated with SCS system use via patient–device interaction metrics. Clinical Trial Registration: In the Netherlands, the study is duly registered on the International Clinical Trials Registry Platform (Trial NL7889). In Germany, the study is duly registered as NCT05272137 and in the United Kingdom as ISCRTN27710516 and has been reviewed by the ethics committee in both countries.</p

    van de Minkelis, Johan

    Full text link

    Prospective Cohort Analysis of DRG Stimulation for Failed Back Surgery Syndrome Pain Following Lumbar Discectomy

    Full text link
    Introduction: Surgical lumbar discectomy is a commonly performed routine spinal procedure that is usually undertaken to alleviate lumbar radicular symptoms caused by a herniated intervertebral disc. Surgical lumbar discectomy can also lead to chronic postsurgical leg and/or back pain (failed back surgery syndrome [FBSS]), a condition that can be refractory to conventional medical management. Early clinical results on the use of dorsal root ganglion (DRG) stimulation for FBSS have supported the use of this treatment alternative. Methods: A multicenter, single-arm, observational cohort study enrolled patients who had chronic pain following surgical lumbar discectomy, had failed conservative treatments, and reported pain intensity of at least 6 out of 10 in the primary region of pain. Data were collected on pain, quality of life, disability, and mood at baseline and through 12 months. Results: Thirteen patients underwent a trial of DRG stimulation; 11 (84.6%; 95% confidence interval = 57.8% to 95.7%) had good outcomes and underwent permanent device placement. Pain was reduced from a score of 8.64 (±0.92) at baseline to 2.40 (±2.38; n = 9) after 12 months of treatment, a 72.05% average reduction (P < 0.001). Similar improvements were observed across the secondary clinical measures, and safety data were in line with published rates. Discussion: These results suggest that DRG stimulation induces pain relief in subjects diagnosed with FBSS. These reductions in pain were also associated with improvements in quality of life and disability. Additional prospective studies are warranted to further investigate this potential application of DRG stimulation, as well as to optimize patient selection, lead placement, and programming strategies

    Steering the Metal Precursor Location in Pd/Zeotype Catalysts and Its Implications for Catalysis

    Get PDF
    Bifunctional catalysts containing a dehydrogenation–hydrogenation function and an acidic function are widely applied for the hydroconversion of hydrocarbon feedstocks obtained from both fossil and renewable resources. It is well known that the distance between the two functionalities is important for the performance of the catalyst. In this study, we show that the heat treatment of the catalyst precursor can be used to steer the location of the Pd precursor with respect to the acid sites in SAPO-11 and ZSM-22 zeotype materials when ions are exchanged with Pd(NH3)4(NO3)2. Two sets of catalysts were prepared based on composite materials of alumina with either SAPO-11 or ZSM-22. Pd was placed on/in the zeotype, followed by a calcination-reduction (CR) or direct reduction (DR) treatment. Furthermore, catalysts with Pd on the alumina binder were prepared. CR results in having more Pd nanoparticles inside the zeotype crystals, whereas DR yields more particles on the outer surface of the zeotype crystals as is confirmed using HAADF-STEM and XPS measurements. The catalytic performance in both n-heptane and n-hexadecane hydroconversion of the catalysts shows that having the Pd nanoparticles on the alumina binder is most beneficial for maximizing the isomer yields. Pd-on-zeotype catalysts prepared using the DR approach show intermediate performances, outperforming their Pd-in-zeotype counterparts that were prepared with the CR approach
    corecore