253 research outputs found
Extracting the rp-process from X-ray burst light curves
The light curves of type I X-ray bursts (XRBs) result from energy released
from the atmosphere of a neutron star when accreted hydrogen and helium ignite
and burn explosively via the rp-process. Since charged particle reaction rates
are both density and very temperature dependent, a simulation model must
provide accurate values of these variables to predict the reaction flow. This
paper uses a self-consistent one-dimensional model calculation with a constant
accretion rate of dM/dt=5e16g/s (0.045 Eddington) and reports on the detailed
rp-process reaction flow of a given burst.Comment: 4 pages, submitted to Nucl. Phys. A as part of the Nuclei in Cosmos 8
proceeding
Probation Officer Roles: A Statutory Analysis
There are a limited number of studies that explore the legally prescribed roles of probation officers. To address this, the current study employed a statutory analysis to examine how probation officer roles have changed over the past 30 years, identifying which tasks and roles are statutorily mandated for probation officers. Findings indicate that there is an emergence of a case manager approach in the legally prescribed roles for probation officers in many states, even though law enforcement-oriented tasks are slightly more prescribed by law than rehabilitation-oriented tasks
Water pair potential of near spectroscopic accuracy. II. Vibration-rotation-tunneling levels of the water dimer
Contains fulltext :
14117.pdf (publisher's version ) (Open Access
Water pair potential of near spectroscopic accuracy. I. Analysis of potential surface and virial coefficients
Contains fulltext :
14099.pdf (publisher's version ) (Open Access
What Legally Prescribed Functions Tell Us: Role Differences Between Adult and Juvenile Probation Officers
The authors\u27 current study, which is built on prior attempts to explore legally prescribed probation functions across 50 states and the District of Columbia, examines the statutorily prescribed duties of adult and juvenile probation officers in the past 10 years. Analyses of role shifts and the complementarities and differences that exist in the statutes are also explored
The rp-process and new measurements of beta-delayed proton decay of light Ag and Cd isotopes
Recent network calculations suggest that a high temperature rp-process could
explain the abundances of light Mo and Ru isotopes, which have long challenged
models of p-process nuclide production. Important ingredients to network
calculations involving unstable nuclei near and at the proton drip line are
-halflives and decay modes, i.e., whether or not -delayed proton
decay takes place. Of particular importance to these network calculation are
the proton-rich isotopes Ag, Ag, Cd and Cd. We
report on recent measurements of -delayed proton branching ratios for
Ag, Ag, and Cd at the on-line mass separator at GSI.Comment: 4 pages, uses espcrc1.sty. Proceedings of the 4th International
Symposium Nuclei in the Cosmos, June 1996, Notre Dame/IN, USA, Ed. M.
Wiescher, to be published in Nucl.Phys.A. Also available at
ftp://ftp.physics.ohio-state.edu/pub/nucex/nic96-gs
Thermonuclear Reaction Rate of 23Mg(p,gamma)24$Al
Updated stellar rates for the reaction 23Mg(p,gamma)24Al are calculated by
using all available experimental information on 24Al excitation energies.
Proton and gamma-ray partial widths for astrophysically important resonances
are derived from shell model calculations. Correspondences of experimentally
observed 24Al levels with shell model states are based on application of the
isobaric multiplet mass equation. Our new rates suggest that the
23Mg(p,gamma)24Al reaction influences the nucleosynthesis in the mass A>20
region during thermonuclear runaways on massive white dwarfs.Comment: 13 pages (uses Revtex) including 3 postscript figures (uses
epsfig.sty), accepted for publication in Phys. Rev.
Cold heteromolecular dipolar collisions
We present the first experimental observation of cold collisions between two
different species of neutral polar molecules, each prepared in a single
internal quantum state. Combining for the first time the techniques of Stark
deceleration, magnetic trapping, and cryogenic buffer gas cooling allows the
enhancement of molecular interaction time by 10. This has enabled an
absolute measurement of the total trap loss cross sections between OH and
ND at a mean collision energy of 3.6 cm (5 K). Due to the dipolar
interaction, the total cross section increases upon application of an external
polarizing electric field. Cross sections computed from \emph{ab initio}
potential energy surfaces are in excellent agreement with the measured value at
zero external electric field. The theory presented here represents the first
such analysis of collisions between a radical and a closed-shell
polyatomic molecule.Comment: 7 pages, 5 figure
Proton Drip-Line Calculations and the Rp-process
One-proton and two-proton separation energies are calculated for proton-rich
nuclei in the region . The method is based on Skyrme Hartree-Fock
calculations of Coulomb displacement energies of mirror nuclei in combination
with the experimental masses of the neutron-rich nuclei. The implications for
the proton drip line and the astrophysical rp-process are discussed. This is
done within the framework of a detailed analysis of the sensitivity of rp
process calculations in type I X-ray burst models on nuclear masses. We find
that the remaining mass uncertainties, in particular for some nuclei with
, still lead to large uncertainties in calculations of X-ray burst light
curves. Further experimental or theoretical improvements of nuclear mass data
are necessary before observed X-ray burst light curves can be used to obtain
quantitative constraints on ignition conditions and neutron star properties. We
identify a list of nuclei for which improved mass data would be most important.Comment: 20 pages, 9 figures, 2 table
- âŠ