18 research outputs found

    Nutrition economics – characterising the economic and health impact of nutrition

    Get PDF
    There is a new merging of health economics and nutrition disciplines to assess the impact of diet on health and disease prevention and to characterise the health and economic aspects of specific changes in nutritional behaviour and nutrition recommendations. A rationale exists for developing the field of nutrition economics which could offer a better understanding of both nutrition, in the context of having a significant influence on health outcomes, and economics, in order to estimate the absolute and relative monetary impact of health measures. For this purpose, an expert meeting assessed questions aimed at clarifying the scope and identifying the key issues that should be taken into consideration in developing nutrition economics as a discipline that could potentially address important questions. We propose a first multidisciplinary outline for understanding the principles and particular characteristics of this emerging field. We summarise here the concepts and the observations of workshop participants and propose a basic setting for nutrition economics and health outcomes research as a novel discipline to support nutrition, health economics and health policy development in an evidence and health-benefit-based manner

    Synthesis of heterodinuclear FeRu(CO)6(R-DAB)(6e)) (R-DAB=RN=C(H) C(H)=NR).Comparison of the reactivities of heterodinuclear FeRu(CO)6(R-DAB(6e)) and homodinuclear analogues M2(CO)6(R-DAB(6e)) (M =Fe, Ru). Single crystal X-ray structures of FeRu(CO)6(i-Pr-DAB(6e)) and FeRu(CO)5(i-Pr-DAB(4e))(C3H4),

    No full text
    The reactions of Fe(CO)3(R-DAB; R1, H(4e)) (1a: R = i-Pr, R1 = H; 1b: R = t-Bu, R1 = H; 1c: R = c-Hex, R1 = H; 1e: R = p-Tol, R1 = H; 1f: R = i-Pr, R1 = Me) with Ru3(CO)12 and of Ru(CO)3(R-DAB; R1, H(4e)) (2a: R = i-Pr, R1 = H; 2d: R = CH(i-Pr)2, R1 = H) with Fe2(CO)9 in refluxing heptane both afforded FeRu(CO)6(R-DAB; R1, H(6e)) (3) in yields between 50 and 65%.The coordination mode of the ligand has been studied by a single crystal X-ray structure determination of FeRu(CO)6(i-Pr-DAB(6e)) (3a). Crystals of 3a are monoclinic, space group P21/a, with four molecules in a unit cell of dimensions: a = 22.436(3), b = 8.136(3), c = 10.266(1) Å and = 99.57(1)o. The structure was refined to R = 0.049 and Rw = 0.052 using 3045 reflections above the 2.5(I) level. The molecule contains an FeRu bond of 2.6602(9) Å, three terminally bonded carbonyls to Fe, three terminally bonded carbonyls to Ru and bridging 6e donating i-Pr-DAB ligand. The i-Pr-DAB ligand is coordinated to Ru via N(1) and N(2) occupying an apical and equatorial site respectively (RuN(1) = 2.138(4) RuN(2) = 2.102(3) Å). The C(2)N(2) moiety of the ligand is 2-coordinated to Fe with C(2) in an apical and N(2) in an equatorial site (FeC(2) = 2.070(5) and FeN(2) = 1.942(3) Å).The 1H and 13C NMR data indicate that in all FeRu(CO)6(R-DAB(6e)) complexes (3a to 3f) exclusively 2-CN coordination to the Fe atom and not to the Ru atom is present irrespective of whether 3 was prepared by reaction of Fe(CO)3(R-DAB(4e)) (1) with Ru3(CO)12 or by reaction of Ru(CO)3(R-DAB(4e)) (2) with Fe2(CO)9. In the case of FeRu(CO)6(i-Pr-DAB; Me, H(6e)) (3f) the NMR data show that only the complex with the C(Me)N moiety of the ligand -N coordinated to the Ru atom and the C(H)N moiety 2-coordinated to the Fe atom was formed. Variable temperature NMR experiments up to 140 oC showed that the -diimine ligand in 3a is stereochemically rigid bonded.FeRu(CO)6(R-DAB(6e)) (3a and 3e) reacted with allene to give FeRu(CO)5(R-DAB(4e))(C3H4) (4a and 4e). A single crystal X-ray structure determination of FeRu(CO)5(i-Pr-DAB(4e))(C3H4) (4a) was performed. Crystals of 4a are triclinic, space group P1, with two molecules in a unit cell of dimensions: a = 9.7882(7), b = 12.2609(9), c = 8.3343(7) Å, = 99.77(1)o, = 91.47(1)o and = 86.00(1)o. The structure was refined to R = 0.028 and Rw = 0.043 using 4598 reflections above the 2(I) level. The molecule contains an FeRu bond of 2.7405(7) Å and three terminally bonded carbonyls to iron. Two carbonyls are terminally bonded to the Ru atom together with a chelating 4e donating i-Pr-DAB ligand [RuN = 2.110(1) (mean)]. The allene ligand is coordinated in an 3-allylic fashion to the Fe atom while the central carbon of the allene moiety is -bonded to the Ru atom (FeC(14) = 2.166(3), FeC(15) = 1.970(2), FeC(16) = 2.127(3) and RuC(15) = 2.075(2) Å). The 1H and 13C NMR data show that in solution the coordination modes of the R-DAB and the allene ligands are the same as in the solid state.Thermolysis reactions of 3a with R-DAB or carbodiimides gave decomposition and did not afford C(imine)C(reactant) coupling products. Thermolysis reactions of 3a with M3(CO)12 (M = Ru, Os) and Me3NO gave decomposition. When the reaction of 3a with Me3NO was performed in the presence of dimethylacetylenedicarboxylate (DMADC) the known complex FeRu(CO)4(i-Pr-DAB(8e))(DMADC) (5a) was formed in low yield. In 5a the R-DAB ligand is in the 8e coordination mode with both the imine bonds 2-coordinated to iron. The acetylene ligand is coordinated in a bridging fashion, parallel with the FeRu bond

    Health economic modeling to assess short-term costs of maternal overweight, gestational diabetes, and related macrosomia - a pilot evaluation

    No full text
    BACKGROUND: Despite the interest in the impact of overweight and obesity on public health, little is known about the social and economic impact of being born large for gestational age or macrosomic. Both conditions are related to maternal obesity and/or gestational diabetes mellitus (GDM) and associated with increased morbidity for mother and child in the perinatal period. Poorly controlled diabetes during pregnancy, pre- pregnancy maternal obesity and/or excessive maternal weight gain during pregnancy are associated with intermittent periods of fetal exposure to hyperglycemia and subsequent hyperinsulinemia, leading to increased birth weight (e.g., macrosomia), body adiposity, and glycogen storage in the liver. Macrosomia is associated with an increased risk of developing obesity and type 2 diabetes mellitus later in life. OBJECTIVE: Provide insight in the short-term health-economic impact of maternal overweight, GDM, and related macrosomia. To this end, a health economic framework was designed. This pilot study also aims to encourage further health technology assessments, based on country- and population-specific data. RESULTS: The estimation of the direct health-economic burden of maternal overweight, GDM and related macrosomia indicates that associated healthcare expenditures are substantial. The calculation of a budget impact of GDM, based on a conservative approach of our model, using USA costing data, indicates an annual cost of more than $1,8 billion without taking into account long-term consequences. CONCLUSION: Although overweight and obesity are a recognized concern worldwide, less attention has been given to the health economic consequences of these conditions in women of child-bearing age and their offspring. The presented outcomes underline the need for preventive management strategies and public health interventions on life style, diet and physical activity. Also, the predisposition in people of Asian ethnicity to develop diabetes emphasizes the urgent need to collect more country-specific data on the incidence of macrosomic births and health outcomes. In addition, it would be of interest to further explore the long-term health economic consequences of macrosomia and related risk factors

    Cost-effectiveness model for a specific mixture of prebiotics in The Netherlands

    No full text
    The objective of this study was to assess the cost-effectiveness of the use of prebiotics for the primary prevention of atopic dermatitis in The Netherlands. A model was constructed using decision analytical techniques. The model was developed to estimate the health economic impact of prebiotic preventive disease management of atopic dermatitis. Data sources used include published literature, clinical trials and official price/tariff lists and national population statistics. The comparator was no supplementation with prebiotics. The primary perspective for conducting the economic evaluation was based on the situation in The Netherlands in 2009. The results show that the use of prebiotics infant formula (IMMUNOFORTISA (R)) leads to an additional cost of a,not sign 51 and an increase in Quality Adjusted Life Years (QALY) of 0.108, when compared with no prebiotics. Consequently, the use of infant formula with a specific mixture of prebiotics results in an incremental cost-effectiveness ratio (ICER) of a,not signA 472. The sensitivity analyses show that the ICER remains in all analyses far below the threshold of a,not sign 20,000/QALY. This study shows that the favourable health benefit of the use of a specific mixture of prebiotics results in positive short- and long-term health economic benefits. In addition, this study demonstrates that the use of infant formula with a specific mixture of prebiotics is a highly cost-effective way of preventing atopic dermatitis in The Netherland

    Health economic modeling to assess short-term costs of maternal overweight, gestational diabetes, and related macrosomia - a pilot evaluation

    Get PDF
    BACKGROUND: Despite the interest in the impact of overweight and obesity on public health, little is known about the social and economic impact of being born large for gestational age or macrosomic. Both conditions are related to maternal obesity and/or gestational diabetes mellitus (GDM) and associated with increased morbidity for mother and child in the perinatal period. Poorly controlled diabetes during pregnancy, pre- pregnancy maternal obesity and/or excessive maternal weight gain during pregnancy are associated with intermittent periods of fetal exposure to hyperglycemia and subsequent hyperinsulinemia, leading to increased birth weight (e.g., macrosomia), body adiposity, and glycogen storage in the liver. Macrosomia is associated with an increased risk of developing obesity and type 2 diabetes mellitus later in life. OBJECTIVE: Provide insight in the short-term health-economic impact of maternal overweight, GDM, and related macrosomia. To this end, a health economic framework was designed. This pilot study also aims to encourage further health technology assessments, based on country- and population-specific data. RESULTS: The estimation of the direct health-economic burden of maternal overweight, GDM and related macrosomia indicates that associated healthcare expenditures are substantial. The calculation of a budget impact of GDM, based on a conservative approach of our model, using USA costing data, indicates an annual cost of more than $1,8 billion without taking into account long-term consequences. CONCLUSION: Although overweight and obesity are a recognized concern worldwide, less attention has been given to the health economic consequences of these conditions in women of child-bearing age and their offspring. The presented outcomes underline the need for preventive management strategies and public health interventions on life style, diet and physical activity. Also, the predisposition in people of Asian ethnicity to develop diabetes emphasizes the urgent need to collect more country-specific data on the incidence of macrosomic births and health outcomes. In addition, it would be of interest to further explore the long-term health economic consequences of macrosomia and related risk factors
    corecore