9 research outputs found

    Applications of Anti-Cytomegalovirus T Cells for Cancer (Immuno)Therapy

    Get PDF
    Infection with cytomegalovirus (CMV) is highly prevalent in the general population and largely controlled by CD8pos T cells. Intriguingly, anti-CMV T cells accumulate over time to extraordinarily high numbers, are frequently present as tumor-resident ‘bystander’ T cells, and remain functional in cancer patients. Consequently, various strategies for redirecting anti-CMV CD8pos T cells to eliminate cancer cells are currently being developed. Here, we provide an overview of these strategies including immunogenic CMV peptide-loading onto endogenous HLA complexes on cancer cells and the use of tumor-directed fusion proteins containing a preassembled CMV peptide/HLA-I complex. Additionally, we discuss conveying the advantageous characteristics of anti-CMV T cells in adoptive cell therapy. Utilization of anti-CMV CD8pos T cells to generate CAR T cells promotes their in vivo persistence and expansion due to appropriate co-stimulation through the endogenous (CMV-)TCR signaling complex. Designing TCR-engineered T cells is more challenging, as the artificial and endogenous TCR compete for expression. Moreover, the use of expanded/reactivated anti-CMV T cells to target CMV peptide-expressing glioblastomas is discussed. This review highlights the most important findings and compares the benefits, disadvantages, and challenges of each strategy. Finally, we discuss how anti-CMV T cell therapies can be further improved to enhance treatment efficacy.</p

    Applications of Anti-Cytomegalovirus T Cells for Cancer (Immuno)Therapy

    Get PDF
    Infection with cytomegalovirus (CMV) is highly prevalent in the general population and largely controlled by CD8pos T cells. Intriguingly, anti-CMV T cells accumulate over time to extraordinarily high numbers, are frequently present as tumor-resident ‘bystander’ T cells, and remain functional in cancer patients. Consequently, various strategies for redirecting anti-CMV CD8pos T cells to eliminate cancer cells are currently being developed. Here, we provide an overview of these strategies including immunogenic CMV peptide-loading onto endogenous HLA complexes on cancer cells and the use of tumor-directed fusion proteins containing a preassembled CMV peptide/HLA-I complex. Additionally, we discuss conveying the advantageous characteristics of anti-CMV T cells in adoptive cell therapy. Utilization of anti-CMV CD8pos T cells to generate CAR T cells promotes their in vivo persistence and expansion due to appropriate co-stimulation through the endogenous (CMV-)TCR signaling complex. Designing TCR-engineered T cells is more challenging, as the artificial and endogenous TCR compete for expression. Moreover, the use of expanded/reactivated anti-CMV T cells to target CMV peptide-expressing glioblastomas is discussed. This review highlights the most important findings and compares the benefits, disadvantages, and challenges of each strategy. Finally, we discuss how anti-CMV T cell therapies can be further improved to enhance treatment efficacy.</p

    Applications of Anti-Cytomegalovirus T Cells for Cancer (Immuno)Therapy

    Get PDF
    Infection with cytomegalovirus (CMV) is highly prevalent in the general population and largely controlled by CD8pos T cells. Intriguingly, anti-CMV T cells accumulate over time to extraordinarily high numbers, are frequently present as tumor-resident ‘bystander’ T cells, and remain functional in cancer patients. Consequently, various strategies for redirecting anti-CMV CD8pos T cells to eliminate cancer cells are currently being developed. Here, we provide an overview of these strategies including immunogenic CMV peptide-loading onto endogenous HLA complexes on cancer cells and the use of tumor-directed fusion proteins containing a preassembled CMV peptide/HLA-I complex. Additionally, we discuss conveying the advantageous characteristics of anti-CMV T cells in adoptive cell therapy. Utilization of anti-CMV CD8pos T cells to generate CAR T cells promotes their in vivo persistence and expansion due to appropriate co-stimulation through the endogenous (CMV-)TCR signaling complex. Designing TCR-engineered T cells is more challenging, as the artificial and endogenous TCR compete for expression. Moreover, the use of expanded/reactivated anti-CMV T cells to target CMV peptide-expressing glioblastomas is discussed. This review highlights the most important findings and compares the benefits, disadvantages, and challenges of each strategy. Finally, we discuss how anti-CMV T cell therapies can be further improved to enhance treatment efficacy.</p

    A Novel Bispecific Antibody for EpCAM-Directed Inhibition of the CD73/Adenosine Immune Checkpoint in Ovarian Cancer

    Get PDF
    PD-1/PD-L1-inhibiting antibodies have shown disappointing efficacy in patients with refractory ovarian cancer (OC). Apparently, OC cells exploit nonoverlapping immunosuppressive mechanisms to evade the immune system. In this respect, the CD73-adenosine inhibitory immune checkpoint is of particular interest, as it rapidly converts pro-inflammatory ATP released from cancer cells to immunosuppressive adenosine (ADO). Moreover, cancer-cell-produced ADO is known to form a highly immunosuppressive extra-tumoral ‘halo’ that chronically inhibits the anticancer activity of various immune effector cells. Thus far, conventional CD73-blocking antibodies such as oleclumab show limited clinical efficacy, probably due to the fact that it indiscriminately binds to and blocks CD73 on a massive surplus of normal cells. To address this issue, we constructed a novel bispecific antibody (bsAb) CD73xEpCAM that inhibits CD73 expressed on the OC cell surface in an EpCAM-directed manner. Importantly, bsAb CD73xEpCAM showed potent capacity to inhibit the CD73 enzyme activity in an EpCAM-directed manner and restore the cytotoxic activity of ADO-suppressed anticancer T cells. Additionally, treatment with bsAb CD73xEpCAM potently inhibited the proliferative capacity of OC cells and enhanced their sensitivity to cisplatin, doxorubicin, 5FU, and ionizing radiation. BsAb CD73xEpCAM may be useful in the development of tumor-directed immunotherapeutic approaches to overcome the CD73-mediated immunosuppression in patients with refractory OC.</p

    A Novel Bispecific Antibody for EpCAM-Directed Inhibition of the CD73/Adenosine Immune Checkpoint in Ovarian Cancer

    Get PDF
    PD-1/PD-L1-inhibiting antibodies have shown disappointing efficacy in patients with refractory ovarian cancer (OC). Apparently, OC cells exploit nonoverlapping immunosuppressive mechanisms to evade the immune system. In this respect, the CD73-adenosine inhibitory immune checkpoint is of particular interest, as it rapidly converts pro-inflammatory ATP released from cancer cells to immunosuppressive adenosine (ADO). Moreover, cancer-cell-produced ADO is known to form a highly immunosuppressive extra-tumoral ‘halo’ that chronically inhibits the anticancer activity of various immune effector cells. Thus far, conventional CD73-blocking antibodies such as oleclumab show limited clinical efficacy, probably due to the fact that it indiscriminately binds to and blocks CD73 on a massive surplus of normal cells. To address this issue, we constructed a novel bispecific antibody (bsAb) CD73xEpCAM that inhibits CD73 expressed on the OC cell surface in an EpCAM-directed manner. Importantly, bsAb CD73xEpCAM showed potent capacity to inhibit the CD73 enzyme activity in an EpCAM-directed manner and restore the cytotoxic activity of ADO-suppressed anticancer T cells. Additionally, treatment with bsAb CD73xEpCAM potently inhibited the proliferative capacity of OC cells and enhanced their sensitivity to cisplatin, doxorubicin, 5FU, and ionizing radiation. BsAb CD73xEpCAM may be useful in the development of tumor-directed immunotherapeutic approaches to overcome the CD73-mediated immunosuppression in patients with refractory OC.</p

    A Novel Bispecific Antibody for EpCAM-Directed Inhibition of the CD73/Adenosine Immune Checkpoint in Ovarian Cancer

    Get PDF
    PD-1/PD-L1-inhibiting antibodies have shown disappointing efficacy in patients with refractory ovarian cancer (OC). Apparently, OC cells exploit nonoverlapping immunosuppressive mechanisms to evade the immune system. In this respect, the CD73-adenosine inhibitory immune checkpoint is of particular interest, as it rapidly converts pro-inflammatory ATP released from cancer cells to immunosuppressive adenosine (ADO). Moreover, cancer-cell-produced ADO is known to form a highly immunosuppressive extra-tumoral ‘halo’ that chronically inhibits the anticancer activity of various immune effector cells. Thus far, conventional CD73-blocking antibodies such as oleclumab show limited clinical efficacy, probably due to the fact that it indiscriminately binds to and blocks CD73 on a massive surplus of normal cells. To address this issue, we constructed a novel bispecific antibody (bsAb) CD73xEpCAM that inhibits CD73 expressed on the OC cell surface in an EpCAM-directed manner. Importantly, bsAb CD73xEpCAM showed potent capacity to inhibit the CD73 enzyme activity in an EpCAM-directed manner and restore the cytotoxic activity of ADO-suppressed anticancer T cells. Additionally, treatment with bsAb CD73xEpCAM potently inhibited the proliferative capacity of OC cells and enhanced their sensitivity to cisplatin, doxorubicin, 5FU, and ionizing radiation. BsAb CD73xEpCAM may be useful in the development of tumor-directed immunotherapeutic approaches to overcome the CD73-mediated immunosuppression in patients with refractory OC.</p

    Bispecific antibody CD73xEGFR more selectively inhibits the CD73/adenosine immune checkpoint on cancer cells and concurrently counteracts pro-oncogenic activities of CD73 and EGFR

    Get PDF
    Background CD73 is an ecto-enzyme that is involved in the conversion of pro-inflammatory extracellular ATP (eATP) excreted by cancer cells under stress to anti-inflammatory adenosine (ADO). A broad variety of solid cancer types was shown to exploit CD73 overexpression as a suppressive immune checkpoint. Consequently, CD73-antagonistic antibodies, most notably oleclumab, are currently evaluated in several multicenter trials for clinical applicability. However, the efficacy of conventional monospecific CD73-inhibiting antibodies may be limited due to on-target/off-tumor binding to CD73 on normal cells. Therefore, a novel approach that more selectively directs CD73 immune checkpoint inhibition towards cancer cells is warranted. Methods To address this issue, we constructed a novel tetravalent bispecific antibody (bsAb), designated bsAb CD73xEGFR. Subsequently, the anticancer activities of bsAb CD73xEGFR were evaluated using in vitro and in vivo tumor models. Results In vitro treatment of various carcinoma cell types with bsAb CD73xEGFR potently inhibited the enzyme activity of CD73 (∼71%) in an EGFR-directed manner. In this process, bsAb CD73xEGFR induced rapid internalization of antigen/antibody complexes, which resulted in a prolonged concurrent displacement of both CD73 and EGFR from the cancer cell surface. In addition, bsAb CD73xEGFR sensitized cancer to the cytotoxic activity of various chemotherapeutic agents and potently inhibited the proliferative/migratory capacity (∼40%) of cancer cells. Unexpectedly, we uncovered that treatment of carcinoma cells with oleclumab appeared to enhance several pro-oncogenic features, including upregulation and phosphorylation of EGFR, tumor cell proliferation (∼20%), and resistance towards cytotoxic agents and ionizing radiation (∼39%). Importantly, in a tumor model using immunocompetent BALB/c mice inoculated with syngeneic CD73 pos /EGFR pos CT26 cancer cells, treatment with bsAb CD73xEGFR outperformed oleclumab (65% vs 31% tumor volume reduction). Compared with oleclumab, treatment with bsAb CD73xEGFR enhanced the intratumoral presence of CD8 pos T cells and M1 macrophages. Conclusions BsAb CD73xEGFR outperforms oleclumab as it inhibits the CD73/ADO immune checkpoint in an EGFR-directed manner and concurrently counteracts several oncogenic activities of EGFR and CD73. Therefore, bsAb CD73xEGFR may be of significant clinical potential for various forms of difficult-to-treat solid cancer types.</p

    Bispecific antibody CD73xEGFR more selectively inhibits the CD73/adenosine immune checkpoint on cancer cells and concurrently counteracts pro-oncogenic activities of CD73 and EGFR

    Get PDF
    Background CD73 is an ecto-enzyme that is involved in the conversion of pro-inflammatory extracellular ATP (eATP) excreted by cancer cells under stress to anti-inflammatory adenosine (ADO). A broad variety of solid cancer types was shown to exploit CD73 overexpression as a suppressive immune checkpoint. Consequently, CD73-antagonistic antibodies, most notably oleclumab, are currently evaluated in several multicenter trials for clinical applicability. However, the efficacy of conventional monospecific CD73-inhibiting antibodies may be limited due to on-target/off-tumor binding to CD73 on normal cells. Therefore, a novel approach that more selectively directs CD73 immune checkpoint inhibition towards cancer cells is warranted. Methods To address this issue, we constructed a novel tetravalent bispecific antibody (bsAb), designated bsAb CD73xEGFR. Subsequently, the anticancer activities of bsAb CD73xEGFR were evaluated using in vitro and in vivo tumor models. Results In vitro treatment of various carcinoma cell types with bsAb CD73xEGFR potently inhibited the enzyme activity of CD73 (∼71%) in an EGFR-directed manner. In this process, bsAb CD73xEGFR induced rapid internalization of antigen/antibody complexes, which resulted in a prolonged concurrent displacement of both CD73 and EGFR from the cancer cell surface. In addition, bsAb CD73xEGFR sensitized cancer to the cytotoxic activity of various chemotherapeutic agents and potently inhibited the proliferative/migratory capacity (∼40%) of cancer cells. Unexpectedly, we uncovered that treatment of carcinoma cells with oleclumab appeared to enhance several pro-oncogenic features, including upregulation and phosphorylation of EGFR, tumor cell proliferation (∼20%), and resistance towards cytotoxic agents and ionizing radiation (∼39%). Importantly, in a tumor model using immunocompetent BALB/c mice inoculated with syngeneic CD73 pos /EGFR pos CT26 cancer cells, treatment with bsAb CD73xEGFR outperformed oleclumab (65% vs 31% tumor volume reduction). Compared with oleclumab, treatment with bsAb CD73xEGFR enhanced the intratumoral presence of CD8 pos T cells and M1 macrophages. Conclusions BsAb CD73xEGFR outperforms oleclumab as it inhibits the CD73/ADO immune checkpoint in an EGFR-directed manner and concurrently counteracts several oncogenic activities of EGFR and CD73. Therefore, bsAb CD73xEGFR may be of significant clinical potential for various forms of difficult-to-treat solid cancer types.</p

    Development, validation, and prognostic evaluation of a risk score for long-term liver-related outcomes in the general population: a multicohort study

    No full text
    Liver cirrhosis is a major cause of death worldwide. Cirrhosis develops after a long asymptomatic period of fibrosis progression, with the diagnosis frequently occurring late, when major complications or cancer develop. Few reliable tools exist for timely identification of individuals at risk of cirrhosis to allow for early intervention. We aimed to develop a novel score to identify individuals at risk for future liver-related outcomes. We derived the LiverRisk score from an international prospective cohort of individuals from six countries without known liver disease from the general population, who underwent liver fibrosis assessment by transient elastography. The score included age, sex, and six standard laboratory variables. We created four groups: minimal risk, low risk, medium risk, and high risk according to selected cutoff values of the LiverRisk score (6, 10, and 15). The model's discriminatory accuracy and calibration were externally validated in two prospective cohorts from the general population. Moreover, we ascertained the prognostic value of the score in the prediction of liver-related outcomes in participants without known liver disease with median follow-up of 12 years (UK Biobank cohort). We included 14 726 participants: 6357 (43·2%) in the derivation cohort, 4370 (29·7%) in the first external validation cohort, and 3999 (27·2%) in the second external validation cohort. The score accurately predicted liver stiffness in the development and external validation cohorts, and was superior to conventional serum biomarkers of fibrosis, as measured by area under the receiver-operating characteristics curve (AUC; 0·83 [95% CI [0·78-0·89]) versus the fibrosis-4 index (FIB-4; 0·68 [0·61-0·75] at 10 kPa). The score was effective in identifying individuals at risk of liver-related mortality, liver-related hospitalisation, and liver cancer, thereby allowing stratification to different risk groups for liver-related outcomes. The hazard ratio for liver-related mortality in the high-risk group was 471 (95% CI 347-641) compared with the minimal risk group, and the overall AUC of the score in predicting 10-year liver-related mortality was 0·90 (0·88-0·91) versus 0.84 (0·82-0·86) for FIB-4. The LiverRisk score, based on simple parameters, predicted liver fibrosis and future development of liver-related outcomes in the general population. The score might allow for stratification of individuals according to liver risk and thus guide preventive care. None. [Abstract copyright: Copyright © 2023 Elsevier Ltd. All rights reserved.
    corecore