4 research outputs found

    Blocking the CD47-SIRPα interaction reverses the disease phenotype in a polycythemia vera mouse model

    Full text link
    Polycythemia vera (PV) is a hematopoietic stem cell neoplasm driven by somatic mutations in JAK2, leading to increased red blood cell (RBC) production uncoupled from mechanisms that regulate physiological erythropoiesis. At steady-state, bone marrow macrophages promote erythroid maturation, whereas splenic macrophages phagocytose aged or damaged RBCs. The binding of the anti-phagocytic ("don't eat me") CD47 ligand expressed on RBCs to the SIRPα receptor on macrophages inhibits phagocytic activity protecting RBCs from phagocytosis. In this study, we explore the role of the CD47-SIRPα interaction on the PV RBC life cycle. Our results show that blocking CD47-SIRPα in a PV mouse model due to either anti-CD47 treatment or loss of the inhibitory SIRPα-signal corrects the polycythemia phenotype. Anti-CD47 treatment marginally impacted PV RBC production while not influencing erythroid maturation. However, upon anti-CD47 treatment, high-parametric single-cell cytometry identified an increase of MerTK+ splenic monocyte-derived effector cells, which differentiate from Ly6Chi^{hi} monocytes during inflammatory conditions, acquire an inflammatory phagocytic state. Furthermore, in vitro, functional assays showed that splenic JAK2 mutant macrophages were more "pro-phagocytic," suggesting that PV RBCs exploit the CD47-SIRPα interaction to escape innate immune attacks by clonal JAK2 mutant macrophages

    Delivery of oligonucleotides to bone marrow to modulate ferrochelatase splicing in a mouse model of erythropoietic protoporphyria

    Get PDF
    Erythropoietic protoporphyria (EPP) is a rare genetic disease in which patients experience acute phototoxic reactions after sunlight exposure. It is caused by a deficiency in ferrochelatase (FECH) in the heme biosynthesis pathway. Most patients exhibit a loss-of-function mutation in trans to an allele bearing a SNP that favors aberrant splicing of transcripts. One viable strategy for EPP is to deploy splice-switching oligonucleotides (SSOs) to increase FECH synthesis, whereby an increase of a few percent would provide therapeutic benefit. However, successful application of SSOs in bone marrow cells is not described. Here, we show that SSOs comprising methoxyethyl-chemistry increase FECH levels in cells. We conjugated one SSO to three prototypical targeting groups and administered them to a mouse model of EPP in order to study their biodistribution, their metabolic stability and their FECH splice-switching ability. The SSOs exhibited distinct distribution profiles, with increased accumulation in liver, kidney, bone marrow and lung. However, they also underwent substantial metabolism, mainly at their linker groups. An SSO bearing a cholesteryl group increased levels of correctly spliced FECH transcript by 80% in the bone marrow. The results provide a promising approach to treat EPP and other disorders originating from splicing dysregulation in the bone marrow.ISSN:1362-4962ISSN:0301-561

    Enhanced engraftment of human myelofibrosis stem and progenitor cells in MISTRG mice

    Full text link
    The engraftment potential of myeloproliferative neoplasms in immunodeficient mice is low. We hypothesized that the physiological expression of human cytokines (macrophage colony-stimulating factor, interleukin-3, granulocyte-macrophage colony-stimulating factor, and thrombopoietin) combined with human signal regulatory protein α expression in Rag2-/-Il2rγ-/- (MISTRG) mice might provide a supportive microenvironment for the development and maintenance of hematopoietic stem and progenitor cells (HSPC) from patients with primary, post-polycythemia or post-essential thrombocythemia myelofibrosis (MF). We show that MISTRG mice, in contrast to standard immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ and Rag2-/-Il2rγ-/- mice, supported engraftment of all patient samples investigated independent of MF disease stage or risk category. Moreover, MISTRG mice exhibited significantly higher human MF engraftment levels in the bone marrow, peripheral blood, and spleen and supported secondary repopulation. Bone marrow fibrosis development was limited to 3 of 14 patient samples investigated in MISTRG mice. Disease-driving mutations were identified in all xenografts, and targeted sequencing revealed maintenance of the primary patient sample clonal composition in 7 of 8 cases. Treatment of engrafted mice with the current standard-of-care Janus kinase inhibitor ruxolitinib led to a reduction in human chimerism. In conclusion, the established MF patient-derived xenograft model supports robust engraftment of MF HSPCs and maintains the genetic complexity observed in patients. The model is suited for further testing of novel therapeutic agents to expedite their transition into clinical trials
    corecore