1,541 research outputs found

    Graphene-WS2_2 heterostructures for tunable spin injection and spin transport

    Get PDF
    We report the first measurements of spin injection in to graphene through a 20 nm thick tungsten disulphide (WS2_2) layer, along with a modified spin relaxation time ({\tau}s) in graphene in the WS2_2 environment, via spin-valve and Hanle spin-precession measurements, respectively. First, during the spin-injection into graphene through a WS2_2-graphene interface, we can tune the interface resistance at different current bias and modify the spin injection efficiency, in a correlation with the conductivity-mismatch theory. Temperature assisted tunneling is identified as a dominant mechanism for the charge transport across the interface. Second, we measure the spin transport in graphene, underneath the WS2_2 crystal and observe a significant reduction in the {\tau}s down to 17 ps in graphene in the WS2_2 covered region, compared to that in its pristine state. The reduced {\tau}s indicates the WS2_2-proximity induced additional dephasing of the spins in graphene.Comment: 7 Pages, 6 figure

    Observation of anomalous Hanle spin precession lineshapes resulting from interaction with localized states

    Get PDF
    It has been shown recently that in spin precession experiments, the interaction of spins with localized states can change the response to a magnetic field, leading to a modified, effective spin relaxation time and precession frequency. Here, we show that also the shape of the Hanle curve can change, so that it cannot be fitted with the solutions of the conventional Bloch equation. We present experimental data that shows such an effect arising at low temperatures in epitaxial graphene on silicon carbide with localized states in the carbon buffer layer. We compare the strength of the effect between materials with different growth methods, epitaxial growth by sublimation and by chemical vapor deposition. The presented analysis gives information about the density of localized states and their coupling to the graphene states, which is inaccessible by charge transport measurements and can be applied to any spin transport channel that is coupled to localized states.Comment: 6 pages, 6 figure

    Separating spin and charge transport in single wall carbon nanotubes

    Get PDF
    We demonstrate spin injection and detection in single wall carbon nanotubes using a 4-terminal, non-local geometry. This measurement geometry completely separates the charge and spin circuits. Hence all spurious magnetoresistance effects are eliminated and the measured signal is due to spin accumulation only. Combining our results with a theoretical model, we deduce a spin polarization at the contacts of approximately 25 %. We show that the magnetoresistance changes measured in the conventional two-terminal geometry are dominated by effects not related to spin accumulation.Comment: Number of pages: 11 Number of figures:

    Verification of the Thomson-Onsager reciprocity relation for spin caloritronics

    Get PDF
    We investigate the Thomson-Onsager relation between the spin-dependent Seebeck and spin-dependent Peltier effect. To maintain identical device and measurement conditions we measure both effects in a single Ni80_{80}Fe20_{20}/Cu/Ni80_{80}Fe20_{20} nanopillar spin valve device subjected to either an electrical or a thermal bias. In the low bias regime, we observe similar spin signals as well as background responses, as required by the Onsager reciprocity relation. However, at large biases, deviation from reciprocity occurs due to dominant nonlinear contribution of the temperature dependent transport coefficients. By systematic modeling of these nonlinear thermoelectric effects and measuring higher order thermoelectric responses for different applied biases, we identify the transition between the two regimes as the point at which Joule heating start to dominate over Peltier heating. Our results signify the importance of local equilibrium for the validity of this phenomenological reciprocity relation.Comment: 5 pages, 5 figure

    The Magneto-coulomb effect in spin valve devices

    Get PDF
    We discuss the influence of the magneto-coulomb effect (MCE) on the magnetoconductance of spin valve devices. We show that MCE can induce magnetoconductances of several per cents or more, dependent on the strength of the coulomb blockade. Furthermore, the MCE-induced magnetoconductance changes sign as a function of gate voltage. We emphasize the importance of separating conductance changes induced by MCE from those due to spin accumulation in spin valve devices.Comment: This paper includes 3 figure

    Electrical spin injection, transport, and detection in graphene-hexagonal boron nitride van der Waals heterostructures: progress and perspectives

    Get PDF
    The current research in graphene spintronics strives for achieving a long spin lifetime, and efficient spin injection and detection in graphene. In this article, we review how hexagonal boron nitride (hBN) has evolved as a crucial substrate, as an encapsulation layer, and as a tunnel barrier for manipulation and control of spin lifetimes and spin injection/detection polarizations in graphene spin valve devices. First, we give an overview of the challenges due to conventional SiO2_2 substrate for spin transport in graphene followed by the progress made in hBN based graphene heterostructures. Then we discuss in detail the shortcomings and developments in using conventional oxide tunnel barriers for spin injection into graphene followed by introducing the recent advancements in using the crystalline single/bi/tri-layer hBN tunnel barriers for an improved spin injection and detection which also can facilitate two-terminal spin valve and Hanle measurements, at room temperature, and are of technological importance. A special case of bias induced spin polarization of contacts with exfoliated and chemical vapour deposition (CVD) grown hBN tunnel barriers is also discussed. Further, we give our perspectives on utilizing graphene-hBN heterostructures for future developments in graphene spintronics.Comment: Review, Author submitted manuscript - draft; 25 pages, 8 figure
    • …
    corecore