1,554 research outputs found

    Diffuse radio emission in the merging cluster MACS J0717.5+3745: the discovery of the most powerful radio halo

    Full text link
    Hierarchical models of structure formation predict that galaxy clusters grow via mergers of smaller clusters and galaxy groups, as well as through continuous accretion of gas. MACS J0717.5+3745 is an X-ray luminous and complex merging cluster, located at a redshift of 0.55. Here we present Giant Metrewave Radio Telescope (GMRT) radio observations at 610 MHz of this cluster. The main aim of the observations is to search for diffuse radio emission within the galaxy cluster MACS J0717.5+3745 related to the ongoing merger. These GMRT observations are complemented by Very Large Array (VLA) archival observations at 1.4, 4.9 and 8.5 GHz. We have discovered a radio halo in the cluster MACS J0717.5+3745 with a size of about 1.2 Mpc. The radio power P_1.4 GHz is 5 x 10^25 W/Hz, which makes it the most powerful radio halo known till date. A 700 kpc radio structure, which we classify as a radio relic, is located in between the merging substructures of the system. The location of this relic roughly coincides with regions of the intra-cluster medium (ICM) that have a significant enhancement in temperature as shown by Chandra. The major axis of the relic is also roughly perpendicular to the merger axis. This shows that the relic might be the result of a merger-related shock wave, where particles are accelerated via the diffuse shock acceleration (DSA) mechanism. Alternatively, the relic might trace an accretion shock of a large-scale galaxy filament to the south-west. The global spectral index of radio emission within the cluster is found to be -1.24 +/-0.05 between 4.9 GHz and 610 MHz. We derive a value of 5.8 microGauss for the equipartition magnetic field strength at the location of the radio halo. [abridged].Comment: 8 pages, 9 figures, accepted for publication in A&A on August 3, 200

    Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster

    Full text link
    Galaxy clusters form through a sequence of mergers of smaller galaxy clusters and groups. Models of diffusive shock acceleration (DSA) suggest that in shocks that occur during cluster mergers, particles are accelerated to relativistic energies, similar to supernova remnants. Together with magnetic fields these particles emit synchrotron radiation and may form so-called radio relics. Here we report the detection of a radio relic for which we find highly aligned magnetic fields, a strong spectral index gradient, and a narrow relic width, giving a measure of the magnetic field in an unexplored site of the universe. Our observations prove that DSA also operates on scales much larger than in supernova remnants and that shocks in galaxy clusters are capable of producing extremely energetic cosmic rays.Comment: Published in Science Express on 23 September 2010, 6 figures, Supporting Online Material included. This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science, volume 330, 15 October 201

    XMM-Newton observations of the merging galaxy cluster CIZA J2242.8+5301

    Full text link
    We studied the intracluster medium of the galaxy cluster CIZA J2242.8+5301 using deep XMM-Newton observations. The cluster hosts a remarkable 2-Mpc long, ~50-kpc wide radio relic that has been nicknamed the "Sausage". A smaller, more irregular counter-relic is also present, along with a faint giant radio halo. We analysed the distribution of the ICM physical properties, and searched for shocks by trying to identify density and temperature discontinuities. East of the southern relic, we find evidence of shock compression corresponding to a Mach number of 1.3, and speculate that the shock extends beyond the length of the radio structure. The ICM temperature increases at the northern relic. More puzzling, we find a "wall" of hot gas east of the cluster centre. A partial elliptical ring of hot plasma appears to be present around the merger. While radio observations and numerical simulations predict a simple merger geometry, the X-ray results point towards a more complex merger scenario.Comment: Extensively revised and expanded, with 18 pages and 17 figure

    Multiple density discontinuities in the merging galaxy cluster CIZA J2242.8+5301

    Full text link
    CIZA J2242.8+5301, a merging galaxy cluster at z=0.19, hosts a double-relic system and a faint radio halo. Radio observations at frequencies ranging from a few MHz to several GHz have shown that the radio spectral index at the outer edge of the N relic corresponds to a shock of Mach number 4.6+/-1.1, under the assumptions of diffusive shock acceleration of thermal particles in the test particle regime. Here, we present results from new Chandra observations of the cluster. The Chandra surface brightness profile across the N relic only hints to a surface brightness discontinuity (<2-sigma detection). Nevertheless, our reanalysis of archival Suzaku data indicates a temperature discontinuity across the relic that is consistent with a Mach number of 2.5+/-0.5, in agreement with previously published results. This confirms that the Mach number at the shock traced by the N relic is much weaker than predicted from the radio. Puzzlingly, in the Chandra data we also identify additional inner small density discontinuities both on and off the merger axis. Temperature measurements on both sides of the discontinuities do not allow us to undoubtedly determine their nature, although a shock front interpretation seems more likely. We speculate that if the inner density discontinuities are indeed shock fronts, then they are the consequence of violent relaxation of the dark matter cores of the clusters involved in the merger.Comment: 11 pages, 11 figures. Accepted for publication in MNRA

    The "toothbrush-relic": evidence for a coherent linear 2-Mpc scale shock wave in a massive merging galaxy cluster?

    Full text link
    Some merging galaxy clusters host diffuse extended radio emission, so-called radio halos and relics. Here we present observations between 147 MHz and 4.9 GHz of a new radio-selected galaxy cluster 1RXS J0603.3+4214 (z=0.225). The cluster is also detected as an extended X-ray source in the RASS. It hosts a large bright 1.9 Mpc radio relic, an elongated ~2 Mpc radio halo, and two smaller radio relics. The large radio relic has a peculiar linear morphology. For this relic we observe a clear spectral index gradient, in the direction towards the cluster center. We performed Rotation Measure (RM) Synthesis between 1.2 and 1.7 GHz. The results suggest that for the west part of the large relic some of the Faraday rotation is caused by ICM and is not only due to galactic foregrounds. We also carried out a detailed spectral analysis of this radio relic and created radio color-color diagrams. We find (i) an injection spectral index of -0.6 to -0.7, (ii) steepening spectral index and increasing spectral curvature in the post-shock region, and (iii) an overall power-law spectrum between 74 MHz and 4.9 GHz with \alpha=-1.10 \pm 0.02. Mixing of emission in the beam from regions with different spectral ages is probably the dominant factor that determines the shape of the radio spectra. Changes in the magnetic field, total electron content, or adiabatic gains/losses do not play a major role. A model in which particles are (re)accelerated in a first order Fermi process at the front of the relic provides the best match to the observed spectra. We speculate that in the post-shock region particles are re-accelerated by merger induced turbulence to form the radio halo as the relic and halo are connected. The 1RXS J0603.3+4214 merger is probably more complex than the "simple'" binary merger events that are thought to give rise to symmetric double radio relics.Comment: 22 pages, 22 figures, accepted for publication in A\&A on September 3, 201

    Using double radio relics to constrain galaxy cluster mergers: A model of double radio relics in CIZA J2242.8+5301

    Full text link
    Galaxy clusters grow by mergers with other clusters and galaxy groups. These mergers create shock waves within the intracluster medium (ICM) that can accelerate particles to extreme energies. In the presence of magnetic fields, relativistic electrons form large regions emitting synchrotron radiation, so-called radio relics. Behind the shock front, synchrotron and inverse Compton (IC) losses cause the radio spectral index to steepen away from the shock front. An example of such a cluster is CIZA J2242.8+5301, where very clear spectral steepening in the downstream region is observed. Here we present hydrodynamical simulations of idealized binary cluster mergers with the aim of constraining the merger scenario for this cluster. From our simulations, we find that CIZA J2242.8+5301 is probably undergoing a merger in the plane of the sky (less then 10 deg from edge-on) with a mass ratio of about 2:1, and an impact parameter < 400 kpc. We find that the core passage of the clusters happened about 1 Gyr ago. We conclude that double relics relics can set constraints on the mass ratios, impact parameters, timescales, and viewing geometry of binary cluster mergers, which is particularly useful when detailed X-ray observations are not available. In addition, the presence of large radio relics can be used to constrain the degree of clumping in the outskirts of the ICM, which is important to constrain the baryon fraction, density and entropy profiles, around the virial radius and beyond. We find that the amplitude of density fluctuations, with sizes of < 200 kpc, in the relic in CIZA J2242.8+5301 is not larger than 30%. [abridged]Comment: 14 pages, 8 figures, accepted for publication in MNRAS on July 20, 201

    SuzakuSuzaku X-ray study of the double radio relic galaxy cluster CIZA J2242.8+5301

    Get PDF
    Content: We present the results from SuzakuSuzaku observations of the merging cluster of galaxies CIZA J2242.8+5301 at zz=0.192. Aims. To study the physics of gas heating and particle acceleration in cluster mergers, we investigated the X-ray emission from CIZA J2242.8+5301, which hosts two giant radio relics in the northern/southern part of the cluster. Methods. We analyzed data from three-pointed Suzaku observations of CIZA J2242.8+5301 to derive the temperature distribution in four different directions. Results: The Intra-Cluster Medium (ICM) temperature shows a remarkable drop from 8.5−0.6+0.8_{-0.6}^{+0.8} keV to 2.7−0.4+0.7_{-0.4}^{+0.7} keV across the northern radio relic. The temperature drop is consistent with a Mach number Mn=2.7−0.4+0.7{\cal M}_n=2.7^{+0.7}_{-0.4} and a shock velocity vshock:n=2300−400+700 km s−1v_{shock:n}=2300_{-400}^{+700}\rm\,km\,s^{-1}. We also confirm the temperature drop across the southern radio relic. However, the ICM temperature beyond this relic is much higher than beyond the northern one, which gives a Mach number Ms=1.7−0.3+0.4{\cal M}_s=1.7^{+0.4}_{-0.3} and shock velocity vshock:s=2040−410+550 km s−1v_{shock:s}=2040_{-410}^{+550}\rm \,km\,s^{-1}. These results agree with other systems showing a relationship between the radio relics and shock fronts which are induced by merging activity. We compare the X-ray derived Mach numbers with the radio derived Mach numbers from the radio spectral index under the assumption of diffusive shock acceleration in the linear test particle regime. For the northern radio relic, the Mach numbers derived from X-ray and radio observations agree with each other. Based on the shock velocities, we estimate that CIZA J2242.8+5301 is observed approximately 0.6 Gyr after core passage. The magnetic field pressure at the northern relic is estimated to be 9% of the thermal pressure.Comment: 12 pages, 10 figures, A&A accepte
    • …
    corecore