2 research outputs found
Amorphous carbon film deposition on inner surface of tubes using atmospheric pressure pulsed filamentary plasma source
Uniform amorphous carbon film is deposited on the inner surface of quartz
tube having the inner diameter of 6 mm and the outer diameter of 8 mm. A pulsed
filamentary plasma source is used for the deposition. Long plasma filaments (~
140 mm) as a positive discharge are generated inside the tube in argon with
methane admixture. FTIR-ATR, XRD, SEM, LSM and XPS analyses give the conclusion
that deposited film is amorphous composed of non-hydrogenated sp2 carbon and
hydrogenated sp3 carbon. Plasma is characterized using optical emission
spectroscopy, voltage-current measurement, microphotography and numerical
simulation. On the basis of observed plasma parameters, the kinetics of the
film deposition process is discussed
Positive and negative streamers in ambient air: modeling evolution and velocities
We simulate short positive and negative streamers in air at standard
temperature and pressure. They evolve in homogeneous electric fields or emerge
from needle electrodes with voltages of 10 to 20 kV. The streamer velocity at
given streamer length depends only weakly on the initial ionization seed,
except in the case of negative streamers in homogeneous fields. We characterize
the streamers by length, head radius, head charge and field enhancement. We
show that the velocity of positive streamers is mainly determined by their
radius and in quantitative agreement with recent experimental results both for
radius and velocity. The velocity of negative streamers is dominated by
electron drift in the enhanced field; in the low local fields of the present
simulations, it is little influenced by photo-ionization. Though negative
streamer fronts always move at least with the electron drift velocity in the
local field, this drift motion broadens the streamer head, decreases the field
enhancement and ultimately leads to slower propagation or even extinction of
the negative streamer.Comment: 18 pages, 10 figure