16 research outputs found

    Population Pharmacokinetic Modelling of Intravenous Immunoglobulin Treatment in Patients with Guillain–Barré Syndrome

    Get PDF
    BACKGROUND AND OBJECTIVE: Intravenous immunoglobulin (IVIg) at a standard dosage is the treatment of choice for Guillain–Barré syndrome. The pharmacokinetics, however, is highly variable between patients, and a rapid clearance of IVIg is associated with poor recovery. We aimed to develop a model to predict the pharmacokinetics of a standard 5-day IVIg course (0.4 g/kg/day) in patients with Guillain–Barré syndrome. METHODS: Non-linear mixed-effects modelling software (NONMEM(®)) was used to construct a pharmacokinetic model based on a model-building cohort of 177 patients with Guillain–Barré syndrome, with a total of 589 sequential serum samples tested for total immunoglobulin G (IgG) levels, and evaluated on an independent validation cohort that consisted of 177 patients with Guillain–Barré syndrome with 689 sequential serum samples. RESULTS: The final two-compartment model accurately described the daily increment in serum IgG levels during a standard IVIg course; the initial rapid fall and then a gradual decline to steady-state levels thereafter. The covariates that increased IgG clearance were a more severe disease (as indicated by the Guillain–Barré syndrome disability score) and concomitant methylprednisolone treatment. When the current dosing regimen was simulated, the percentage of patients who reached a target ∆IgG > 7.3 g/L at 2 weeks decreased from 74% in mildly affected patients to only 33% in the most severely affected and mechanically ventilated patients (Guillain–Barré syndrome disability score of 5). CONCLUSIONS: This is the first population-pharmacokinetic model for standard IVIg treatment in Guillain–Barré syndrome. The model provides a new tool to predict the pharmacokinetics of alternative regimens of IVIg in Guillain–Barré syndrome to design future trials and personalise treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40262-022-01136-z

    Dynamics and prognostic value of serum neurofilament light chain in Guillain-Barré syndrome

    Get PDF
    Background: Neurofilament light chain (NfL) is a biomarker for axonal damage in several neurological disorders. We studied the longitudinal changes in serum NfL in patients with Guillain-Barré syndrome (GBS) in relation to disease severity, electrophysiological subtype, treatment response, and prognosis. Methods: We included patients with GBS who participated in a double-blind, randomised, placebo-controlled trial that evaluated the effects of a second course of intravenous immunoglobulin (IVIg) on clinical outcomes. Serum NfL levels were measured before initiation of treatment and at one, two, four, and twelve weeks using a Simoa HD-X Analyzer. Serum NfL dynamics were analysed using linear mixed-effects models. Logistic regression was employed to determine the associations of serum NfL with clinical outcome and the prognostic value of serum NfL after correcting for known prognostic markers.Findings: NfL levels were tested in serum from 281 patients. Serum NfL dynamics were associated with disease severity and electrophysiological subtype. Strong associations were found between high levels of serum NfL at two weeks and inability to walk unaided at four weeks (OR = 1.74, 95% CI = 1.27–2.45), and high serum NfL levels at four weeks and inability to walk unaided at 26 weeks (OR = 2.79, 95% CI = 1.72–4.90). Baseline serum NfL had the most significant prognostic value for ability to walk, independent of known predictors of outcome. The time to regain ability to walk unaided was significantly longer for patients with highest serum NfL levels at baseline (p = 0.0048) and week 2 (p &lt; 0.0001). No differences in serum NfL were observed between patients that received a second IVIg course vs. IVIg and placebo.Interpretation: Serum NfL levels are associated with disease severity, axonal involvement, and poor outcome in GBS. Serum NfL potentially represents a biomarker to monitor neuronal damage in GBS and an intermediate endpoint to evaluate the effects of treatment. </p

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Targeted multiomics in childhood-onset SLE reveal distinct biological phenotypes associated with disease activity: results from an explorative study

    Get PDF
    Objective To combine targeted transcriptomic and proteomic data in an unsupervised hierarchical clustering method to stratify patients with childhood-onset SLE (cSLE) into similar biological phenotypes, and study the immunological cellular landscape that characterises the clusters.Methods Targeted whole blood gene expression and serum cytokines were determined in patients with cSLE, preselected on disease activity state (at diagnosis, Low Lupus Disease Activity State (LLDAS), flare). Unsupervised hierarchical clustering, agnostic to disease characteristics, was used to identify clusters with distinct biological phenotypes. Disease activity was scored by clinical SELENA-SLEDAI (Safety of Estrogens in Systemic Lupus Erythematosus National Assessment-Systemic Lupus Erythematosus Disease Activity Index). High-dimensional 40-colour flow cytometry was used to identify immune cell subsets.Results Three unique clusters were identified, each characterised by a set of differentially expressed genes and cytokines, and by disease activity state: cluster 1 contained primarily patients in LLDAS, cluster 2 contained mainly treatment-naïve patients at diagnosis and cluster 3 contained a mixed group of patients, namely in LLDAS, at diagnosis and disease flare. The biological phenotypes did not reflect previous organ system involvement and over time, patients could move from one cluster to another. Healthy controls clustered together in cluster 1. Specific immune cell subsets, including CD11c+ B cells, conventional dendritic cells, plasmablasts and early effector CD4+ T cells, differed between the clusters.Conclusion Using a targeted multiomic approach, we clustered patients into distinct biological phenotypes that are related to disease activity state but not to organ system involvement. This supports a new concept where choice of treatment and tapering strategies are not solely based on clinical phenotype but includes measuring novel biological parameters

    Gene signature fingerprints stratify SLE patients in groups with similar biological disease profiles: a multicentre longitudinal study

    No full text
    OBJECTIVES: Clinical phenotyping and predicting treatment responses in SLE patients is challenging. Extensive blood transcriptional profiling has identified various gene modules that are promising for stratification of SLE patients. We aimed to translate existing transcriptomic data into simpler gene signatures suitable for daily clinical practice. METHODS: Real-time PCR of multiple genes from the IFN M1.2, IFN M5.12, neutrophil (NPh) and plasma cell (PLC) modules, followed by a principle component analysis, was used to identify indicator genes per gene signature. Gene signatures were measured in longitudinal samples from two childhood-onset SLE cohorts (n = 101 and n = 34, respectively), and associations with clinical features were assessed. Disease activity was measured using Safety of Estrogen in Lupus National Assessment (SELENA)-SLEDAI. Cluster analysis subdivided patients into three mutually exclusive fingerprint-groups termed (1) all-signatures-low, (2) only IFN high (M1.2 and/or M5.12) and (3) high NPh and/or PLC. RESULTS: All gene signatures were significantly associated with disease activity in cross-sectionally collected samples. The PLC-signature showed the highest association with disease activity. Interestingly, in longitudinally collected samples, the PLC-signature was associated with disease activity and showed a decrease over time. When patients were divided into fingerprints, the highest disease activity was observed in the high NPh and/or PLC group. The lowest disease activity was observed in the all-signatures-low group. The same distribution was reproduced in samples from an independent SLE cohort. CONCLUSIONS: The identified gene signatures were associated with disease activity and were indicated to be suitable tools for stratifying SLE patients into groups with similar activated immune pathways that may guide future treatment choices

    Gene signature fingerprints stratify SLE patients in groups with similar biological disease profiles: a multicentre longitudinal study

    No full text
    OBJECTIVES: Clinical phenotyping and predicting treatment responses in SLE patients is challenging. Extensive blood transcriptional profiling has identified various gene modules that are promising for stratification of SLE patients. We aimed to translate existing transcriptomic data into simpler gene signatures suitable for daily clinical practice. METHODS: Real-time PCR of multiple genes from the IFN M1.2, IFN M5.12, neutrophil (NPh) and plasma cell (PLC) modules, followed by a principle component analysis, was used to identify indicator genes per gene signature. Gene signatures were measured in longitudinal samples from two childhood-onset SLE cohorts (n = 101 and n = 34, respectively), and associations with clinical features were assessed. Disease activity was measured using Safety of Estrogen in Lupus National Assessment (SELENA)-SLEDAI. Cluster analysis subdivided patients into three mutually exclusive fingerprint-groups termed (1) all-signatures-low, (2) only IFN high (M1.2 and/or M5.12) and (3) high NPh and/or PLC. RESULTS: All gene signatures were significantly associated with disease activity in cross-sectionally collected samples. The PLC-signature showed the highest association with disease activity. Interestingly, in longitudinally collected samples, the PLC-signature was associated with disease activity and showed a decrease over time. When patients were divided into fingerprints, the highest disease activity was observed in the high NPh and/or PLC group. The lowest disease activity was observed in the all-signatures-low group. The same distribution was reproduced in samples from an independent SLE cohort. CONCLUSIONS: The identified gene signatures were associated with disease activity and were indicated to be suitable tools for stratifying SLE patients into groups with similar activated immune pathways that may guide future treatment choices

    Gene signature fingerprints stratify SLE patients in groups with similar biological disease profiles: a multicentre longitudinal study

    Get PDF
    OBJECTIVES: Clinical phenotyping and predicting treatment responses in SLE patients is challenging. Extensive blood transcriptional profiling has identified various gene modules that are promising for stratification of SLE patients. We aimed to translate existing transcriptomic data into simpler gene signatures suitable for daily clinical practice. METHODS: Real-time PCR of multiple genes from the IFN M1.2, IFN M5.12, neutrophil (NPh) and plasma cell (PLC) modules, followed by a principle component analysis, was used to identify indicator genes per gene signature. Gene signatures were measured in longitudinal samples from two childhood-onset SLE cohorts (n = 101 and n = 34, respectively), and associations with clinical features were assessed. Disease activity was measured using Safety of Estrogen in Lupus National Assessment (SELENA)-SLEDAI. Cluster analysis subdivided patients into three mutually exclusive fingerprint-groups termed (1) all-signatures-low, (2) only IFN high (M1.2 and/or M5.12) and (3) high NPh and/or PLC. RESULTS: All gene signatures were significantly associated with disease activity in cross-sectionally collected samples. The PLC-signature showed the highest association with disease activity. Interestingly, in longitudinally collected samples, the PLC-signature was associated with disease activity and showed a decrease over time. When patients were divided into fingerprints, the highest disease activity was observed in the high NPh and/or PLC group. The lowest disease activity was observed in the all-signatures-low group. The same distribution was reproduced in samples from an independent SLE cohort. CONCLUSIONS: The identified gene signatures were associated with disease activity and were indicated to be suitable tools for stratifying SLE patients into groups with similar activated immune pathways that may guide future treatment choices

    The landscape of genomic alterations across childhood cancers

    No full text
    Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials
    corecore