8 research outputs found

    Polarized emission from hexagonal-silicon-germanium nanowires

    Get PDF
    We present polarized emission from single hexagonal silicon-germanium (hex-SiGe) nanowires. To understand the nature of the band-to-band emission of hex-SiGe, we have performed photoluminescence spectroscopy to investigate the polarization properties of hex-SiGe core-shell nanowires. We observe a degree of polarization of 0.2 to 0.32 perpendicular to the nanowire c-axis. Finite-difference time-domain simulations were performed to investigate the influence of the dielectric contrast of nanowire structures. We find that the dielectric contrast significantly reduces the observable degree of polarization. Taking into account this reduction, the experimental data are in good agreement with polarized dipole emission perpendicular to the c-axis, as expected for the fundamental band-to-band transition, the lowest energy direct band-to-band transition in the hex-SiGe band structure.</p

    Direct bandgap quantum wells in hexagonal Silicon Germanium

    Get PDF
    Silicon is indisputably the most advanced material for scalable electronics, but it is a poor choice as a light source for photonic applications, due to its indirect band gap. The recently developed hexagonal Si1−xGex semiconductor features a direct bandgap at least for x &gt; 0.65, and the realization of quantum heterostructures would unlock new opportunities for advanced optoelectronic devices based on the SiGe system. Here, we demonstrate the synthesis and characterization of direct bandgap quantum wells realized in the hexagonal Si1−xGex system. Photoluminescence experiments on hex-Ge/Si0.2Ge0.8 quantum wells demonstrate quantum confinement in the hex-Ge segment with type-I band alignment, showing light emission up to room temperature. Moreover, the tuning range of the quantum well emission energy can be extended using hexagonal Si1−xGex/Si1−yGey quantum wells with additional Si in the well. These experimental findings are supported with ab initio bandstructure calculations. A direct bandgap with type-I band alignment is pivotal for the development of novel low-dimensional light emitting devices based on hexagonal Si1−xGex alloys, which have been out of reach for this material system until now.</p

    Low Surface Recombination in Hexagonal SiGe Alloy Nanowires:Implications for SiGe-Based Nanolasers

    Get PDF
    Monolithic integration of silicon-based electronics and photonics could open the door toward many opportunities including on-chip optical data communication and large-scale application of light-based sensing devices in healthcare and automotive; by some, it is considered the Holy Grail of silicon photonics. The monolithic integration is, however, severely hampered by the inability of Si to efficiently emit light. Recently, important progress has been made by the demonstration of efficient light emission from direct-bandgap hexagonal SiGe (hex-SiGe) alloy nanowires. For this promising material, realized by employing a nanowire structure, many challenges and open questions remain before a large-scale application can be realized. Considering that for other direct-bandgap materials like GaAs, surface recombination can be a true bottleneck, one of the open questions is the importance of surface recombination for the photoluminescence efficiency of this new material. In this work, temperature-dependent photoluminescence measurements were performed on both hex-Ge and hex-SiGe nanowires with and without surface passivation schemes that have been well documented and proven effective on cubic silicon and germanium to elucidate whether and to what extent the internal quantum efficiency (IQE) of the wires can be improved. Additionally, time-resolved photoluminescence (TRPL) measurements were performed on unpassivated hex-SiGe nanowires as a function of their diameter. The dependence of the surface recombination on the SiGe composition could, however, not be yet addressed given the sample-to-sample variations of the state-of-the-art hex-SiGe nanowires. With the aforementioned experiments, we demonstrate that at room temperature, under high excitation conditions (a few kW cm–2), the hex-(Si)Ge surface is most likely not a bottleneck for efficient radiative emission under relatively high excitation conditions. This is an important asset for future hex(Si)Ge optoelectronic devices, specifically for nanolasers

    Color generation from self-organized metalo-dielectric nanopillar arrays

    No full text
    Nanostructures composed of dielectric, metallic or metalo-dielectric structures are receiving significant attention due to their unique capabilities to manipulate light for a wide range of functions such as spectral colors, anti-reflection and enhanced light-matter interaction. The optical properties of such nanostructures are determined not only by the shape and dimensions of the structures but also by their spatial arrangement. Here, we demonstrate the generation of vivid colors from nanostructures composed of spatially disordered metalo-dielectric (In/InP) nanopillar arrays. The nanopillars are formed by a single-step, ion-sputtering-assisted, self-assembly process that is inherently scalable and avoids complex patterning and deposition procedures. The In/InP nanopillar dimensions can be changed in a controlled manner by varying the sputter duration, resulting in reflective colors from pale blue to dark red. The fast Fourier transform (FFT) analysis of the distribution of the formed nanopillars shows that they are spatially disordered. The electromagnetic simulations combined with the optical measurements show that the reflectance spectra are strongly influenced by the pillar dimensions. While the specular and diffuse reflectance components are appreciable in all the nanopillar samples, the specular part dominates for the shorter nanopillars, thereby leading to a glossy effect. The simulation results show that the characteristic features in the observed specular and diffused reflectance spectra are determined by the modal and light-scattering properties of single pillars. While the work focuses on the In/InP system, the findings are relevant in a wider context of structural color generation from other types of metalo-dielectric nanopillar arrays

    Proof of Stimulated Emission in Silicon-Germanium

    No full text
    We have investigated a hexagonal Silicon-Germanium NW on top of a microstadium resonator using time resolved photoluminescence. Clear indications of fast stimulated emission from hex-SiGe are observed, showing that we approach lasing

    Polarized Emission from hexagonal-Silicon Germanium Nanowires

    No full text
    This dataset contains the polarization dependent photoluminescence intensity measurements on hexagonal-silicon germanium nanowires. This data confirms the selection rules of the fundemental direct bandgap transition of the material. The data is zipped and contains a README which describes the storage of the data inside the folder
    corecore