63 research outputs found
Presence of tobramycin in blood and urine during selective decontamination of the digestive tract in critically ill patients, a prospective cohort study
Tobramycin is one of the components used for selective decontamination of the digestive tract (SDD), applied to prevent colonization and subsequent infections in critically ill patients. Tobramycin is administered in the oropharynx and gastrointestinal tract and is normally not absorbed. However, critical illness may convey gut barrier failure. The aim of the study was to assess the prevalence and amount of tobramycin leakage from the gut into the blood, to quantify tobramycin excretion in urine, and to determine the association of tobramycin leakage with markers of circulation, kidney function and other organ failure. This was a prospective observational cohort study. The setting was the 20-bed closed format-mixed ICU of a teaching hospital. The study population was critically ill patients with an expected stay of more than two days, receiving SDD with tobramycin, polymyxin-E and amphotericin-B four times daily in the oropharynx and stomach. Tobramycin concentration was measured in serum (sensitive high performance liquid chromatography - mass spectrometry/mass spectrometry (HLPC-MS/MS) assay) and 24-hour urine (conventional immunoassay), in 34 patients, 24 hours after ICU admission, and in 71 patients, once daily for 7 days. Tobramycin leakage was defined as tobramycin detected in serum at least once (> 0.05 mg/L). Ototoxicity was not monitored. Of the 100 patients with available blood samples, 83 had tobramycin leakage. Median highest serum concentration for each patient was 0.12 mg/L; 99% of the patients had at least one positive urinary sample (> 0.5 mg/L), 49% had a urinary concentration ≥ 1 mg/L. The highest tobramycin serum concentration was significantly associated with vasopressor support, renal and hepatic dysfunction, and C-reactive protein. At binary logistic regression analysis, high dopamine dose and low urinary output on Day 1 were the significant predictors of tobramycin leakage. Nephrotoxicity could not be shown. The majority of acute critically ill patients treated with enteral tobramycin as a component of SDD had traces of tobramycin in the blood, especially those with severe shock, inflammation and subsequent acute kidney injury, suggesting loss of gut barrier and decreased renal removal. Unexpectedly, urinary tobramycin was above the therapeutic trough level in half of the patients. Nephrotoxicity could not be demonstrated
Decorin and TGF-β(1 )polymorphisms and development of COPD in a general population
BACKGROUND: Decorin, an extracellular matrix (ECM) proteoglycan, and TGF-β(1 )are both involved in lung ECM turnover. Decorin and TGF-β(1 )expression are decreased respectively increased in COPD lung tissue. Interestingly, they act as each other's feedback regulator. We investigated whether single nucleotide polymorphisms (SNPs) in decorin and TGF-β(1 )underlie accelerated decline in FEV(1 )and development of COPD in the general population. METHODS: We genotyped 1390 subjects from the Vlagtwedde/Vlaardingen cohort. Lung function was measured every 3 years for a period of 25 years. We tested whether five SNPs in decorin (3'UTR and four intron SNPs) and three SNPs in TGF-β(1 )(3'UTR rs6957, C-509T rs1800469 and Leu10Pro rs1982073), and their haplotypes, were associated with COPD (last survey GOLD stage = II). Linear mixed effects models were used to analyze genotype associations with FEV(1 )decline. RESULTS: We found a significantly higher prevalence of carriers of the minor allele of the TGF-β(1 )rs6957 SNP (p = 0.001) in subjects with COPD. Additionally, we found a significantly lower prevalence of the haplotype with the major allele of rs6957 and minor alleles for rs1800469 and rs1982073 SNPs in TGF-β(1 )in subjects with COPD (p = 0.030), indicating that this association is due to the rs6957 SNP. TGF-β(1 )SNPs were not associated with FEV(1 )decline. SNPs in decorin, and haplotypes constructed of both TGF-β(1 )and decorin SNPs were not associated with development of COPD or with FEV(1 )decline. CONCLUSION: Our study shows for the first time that SNPs in decorin on its own or in interaction with SNPs in TGF-β(1 )do not underlie the disturbed balance in expression between these genes in COPD. TGF-β(1 )SNPs are associated with COPD, yet not with accelerated FEV(1 )decline in the general population
Smad gene expression in pulmonary fibroblasts: indications for defective ECM repair in COPD
Background: Chronic Obstructive Pulmonary Disease ( COPD) is characterized by defective extracellular matrix (ECM) turnover as a result of prolonged cigarette smoking. Fibroblasts have a central role in ECM turnover. The TGF beta induced Smad pathway provides intracellular signals to regulate ECM production. We address the following hypothesis: fibroblasts have abnormal expression of genes in the Smad pathway in COPD, resulting in abnormal proteoglycan modulation, the ground substance of ECM. Methods: We compared gene expression of the Smad pathway at different time points after stimulation with TGF beta, TNF or cigarette smoke extract (CSE) in pulmonary fibroblasts of GOLD stage II and IV COPD patients, and controls. Results: Without stimulation, all genes were similarly expressed in control and COPD fibroblasts. TGF beta stimulation: downregulation of Smad3 and upregulation of Smad7 occurred in COPD and control fibroblasts, indicating a negative feedback loop upon TGF beta stimulation. CSE hardly influenced gene expression of the TGF beta-Smad pathway in control fibroblasts, whereas it reduced Smad3 and enhanced Smad7 gene expression in COPD fibroblasts. Furthermore, decorin gene expression decreased by all stimulations in COPD but not in control fibroblasts. Conclusion: Fibroblasts of COPD patients and controls differ in their regulation of the Smad pathway, the contrast being most pronounced under CSE exposure. This aberrant responsiveness of COPD fibroblasts to CSE might result in an impaired tissue repair capability and is likely important with regard to the question why only a subset of smokers demonstrates an excess ECM destruction under influence of cigarette smoking
Altered fibroblast proteoglycan production in COPD
<p>Abstract</p> <p>Background</p> <p>Airway remodeling in COPD includes reorganization of the extracellular matrix. Proteoglycans play a crucial role in this process as regulators of the integrity of the extracellular matrix. Altered proteoglycan immunostaining has been demonstrated in COPD lungs and this has been suggested to contribute to the pathogenesis. The major cell type responsible for production and maintenance of ECM constituents, such as proteoglycans, are fibroblasts. Interestingly, it has been proposed that central airways and alveolar lung parenchyma contain distinct fibroblast populations. This study explores the hypothesis that altered depositions of proteoglycans in COPD lungs, and in particular versican and perlecan, is a result of dysregulated fibroblast proteoglycan production.</p> <p>Methods</p> <p>Proliferation, proteoglycan production and the response to TGF-β<sub>1 </sub>were examined <it>in vitro </it>in centrally and distally derived fibroblasts isolated from COPD patients (GOLD stage IV) and from control subjects.</p> <p>Results</p> <p>Phenotypically different fibroblast populations were identified in central airways and in the lung parenchyma. Versican production was higher in distal fibroblasts from COPD patients than from control subjects (p < 0.01). In addition, perlecan production was lower in centrally derived fibroblasts from COPD patients than from control subjects (p < 0.01). TGF-β<sub>1 </sub>triggered similar increases in proteoglycan production in distally derived fibroblasts from COPD patients and control subjects. In contrast, centrally derived fibroblasts from COPD patients were less responsive to TGF-β<sub>1 </sub>than those from control subjects.</p> <p>Conclusions</p> <p>The results show that fibroblasts from COPD patients have alterations in proteoglycan production that may contribute to disease development. Distally derived fibroblasts from COPD patients have enhanced production of versican that may have a negative influence on the elastic recoil. In addition, a lower perlecan production in centrally derived fibroblasts from COPD patients may indicate alterations in bronchial basement membrane integrity in severe COPD.</p
High-frequency variability in neutron-star low-mass X-ray binaries
Binary systems with a neutron-star primary accreting from a companion star
display variability in the X-ray band on time scales ranging from years to
milliseconds. With frequencies of up to ~1300 Hz, the kilohertz quasi-periodic
oscillations (kHz QPOs) represent the fastest variability observed from any
astronomical object. The sub-millisecond time scale of this variability implies
that the kHz QPOs are produced in the accretion flow very close to the surface
of the neutron star, providing a unique view of the dynamics of matter under
the influence of some of the strongest gravitational fields in the Universe.
This offers the possibility to probe some of the most extreme predictions of
General Relativity, such as dragging of inertial frames and periastron
precession at rates that are sixteen orders of magnitude faster than those
observed in the solar system and, ultimately, the existence of a minimum
distance at which a stable orbit around a compact object is possible. Here we
review the last twenty years of research on kHz QPOs, and we discuss the
prospects for future developments in this field.Comment: 66 pages, 37 figures, 190 references. Review to appear in T. Belloni,
M. Mendez, C. Zhang, editors, "Timing Neutron Stars: Pulsations, Oscillations
and Explosions", ASSL, Springe
Changes in elastin, elastin binding protein and versican in alveoli in chronic obstructive pulmonary disease
<p>Abstract</p> <p>Background</p> <p>COPD is characterised by loss of alveolar elastic fibers and by lack of effective repair. Elastic fibers are assembled at cell surfaces by elastin binding protein (EBP), a molecular chaperone whose function can be reversibility inhibited by chondroitin sulphate of matrix proteoglycans such as versican. This study aimed to determine if alveoli of patients with mild to moderate COPD contained increased amounts of versican and a corresponding decrease in EBP, and if these changes were correlated with decreases in elastin and FEV<sub>1</sub>.</p> <p>Methods</p> <p>Lung samples were obtained from 26 control (FEV<sub>1 </sub>≥ 80% predicted, FEV<sub>1</sub>/VC >0.7) and 17 COPD patients (FEV<sub>1 </sub>≥ 40% – <80% predicted, FEV<sub>1</sub>/VC ≤ 0.7) who had undergone a lobectomy for bronchial carcinoma. Samples were processed for histological and immuno-staining. Volume fractions (<it>V</it><sub>v</sub>) of elastin in alveolar walls and alveolar rims were determined by point counting, and versican and EBP assessed by grading of staining intensities.</p> <p>Results</p> <p>Elastin <it>V</it>v was positively correlated with FEV<sub>1 </sub>for both the alveolar walls (r = 0.66, p < 0.001) and rims (r = 0.41, p < 0.01). Versican was negatively correlated with FEV<sub>1 </sub>in both regions (r = 0.30 and 0.32 respectively, p < 0.05), with the highest staining intensities found in patients with the lowest values for FEV<sub>1</sub>. Conversely, staining intensities for EBP in alveolar walls and rims and were positively correlated with FEV<sub>1 </sub>(r = 0.43 and 0.46, p < 0.01).</p> <p>Conclusion</p> <p>Patients with mild to moderate COPD show progressively increased immuno-staining for versican and correspondingly decreased immuno-staining for EBP, with decreasing values of FEV<sub>1</sub>. These findings may explain the lack of repair of elastic fibers in the lungs of patients with moderate COPD. Removal of versican may offer a strategy for effective repair.</p
A Very Large Number of GABAergic Neurons Are Activated in the Tuberal Hypothalamus during Paradoxical (REM) Sleep Hypersomnia
We recently discovered, using Fos immunostaining, that the tuberal and mammillary hypothalamus contain a massive population of neurons specifically activated during paradoxical sleep (PS) hypersomnia. We further showed that some of the activated neurons of the tuberal hypothalamus express the melanin concentrating hormone (MCH) neuropeptide and that icv injection of MCH induces a strong increase in PS quantity. However, the chemical nature of the majority of the neurons activated during PS had not been characterized. To determine whether these neurons are GABAergic, we combined in situ hybridization of GAD67 mRNA with immunohistochemical detection of Fos in control, PS deprived and PS hypersomniac rats. We found that 74% of the very large population of Fos-labeled neurons located in the tuberal hypothalamus after PS hypersomnia were GAD-positive. We further demonstrated combining MCH immunohistochemistry and GAD67 in situ hybridization that 85% of the MCH neurons were also GAD-positive. Finally, based on the number of Fos-ir/GAD+, Fos-ir/MCH+, and GAD+/MCH+ double-labeled neurons counted from three sets of double-staining, we uncovered that around 80% of the large number of the Fos-ir/GAD+ neurons located in the tuberal hypothalamus after PS hypersomnia do not contain MCH. Based on these and previous results, we propose that the non-MCH Fos/GABAergic neuronal population could be involved in PS induction and maintenance while the Fos/MCH/GABAergic neurons could be involved in the homeostatic regulation of PS. Further investigations will be needed to corroborate this original hypothesis
- …