1,196 research outputs found

    Design choices for agent-based control of AGVs in the dough making process

    Get PDF
    In this paper we consider a multi-agent system (MAS) for the logistics control of Automatic Guided Vehicles (AGVs) that are used in the dough making process at an industrial bakery. Here, logistics control refers to constructing robust schedules for all transportation jobs. The paper discusses how alternative MAS designs can be developed and compared using cost, frequency of messages between agents, and computation time for evaluating control rules as performance indicators. Qualitative design guidelines turn out to be insufficient to select the best agent architecture. Therefore, we also use simulation to support decision making, where we use real-life data from the bakery to evaluate several alternative designs. We find that architectures in which line agents initiate allocation of transportation jobs, and AGV agents schedule multiple jobs in advance, perform best. We conclude by discussing the benefits of our MAS systems design approach for real-life applications

    Opportunity costs calculation in agent-based vehicle routing and scheduling

    Get PDF
    In this paper we consider a real-time, dynamic pickup and delivery problem with timewindows where orders should be assigned to one of a set of competing transportation companies. Our approach decomposes the problem into a multi-agent structure where vehicle agents are responsible for the routing and scheduling decisions and the assignment of orders to vehicles is done by using a second-price auction. Therefore the system performance will be heavily dependent on the pricing strategy of the vehicle agents. We propose a pricing strategy for vehicle agents based on dynamic programming where not only the direct cost of a job insertion is taken into account, but also its impact on future opportunities. We also propose a waiting strategy based on the same opportunity valuation. Simulation is used to evaluate the benefit of pricing opportunities compared to simple pricing strategies in different market settings. Numerical results show that the proposed approach provides high quality solutions, in terms of profits, capacity utilization and delivery reliability

    Applying revenue management to agent-based transportation planning

    Get PDF
    We consider a multi-company, less-than-truckload, dynamic VRP based on the concept of multi-agent systems. We focus on the intelligence of one vehicle agent and especially on its bidding strategy. We address the problem how to price loads that are offered in real-time such that available capacity is used in the most profitable way taking into account possible future revenues. We develop methods to price loads dynamically based on revenue management concepts.\ud We consider a one leg problem, i.e., a vehicle travels from i to j and can wait at most Ï„ time units in which it can get additional loads from i to j. We develop a DP to price loads given a certain amount of remaining capacity and an expected number of auctions in the time-to-go. Because a DP might be impractical if parameters change frequently and bids has to be determined in real-time, we derived two approximations to speed up calculations. The performance of these approximations are compared with the performance of the DP. Besides we introduce a new measure to calculate the average vehicle utilisation in consolidated shipments. This measure can be calculated based on a limited amount of data and gives an indication of the efficiency of schedules and the performance of vehicles

    Dynamic threshold policy for delaying and breaking commitments in transportation auctions

    Get PDF
    In this paper we consider a transportation procurement auction consisting of shippers and carriers. Shippers offer time sensitive pickup and delivery jobs and carriers bid on these jobs. We focus on revenue maximizing strategies for shippers in sequential auctions. For this purpose we propose two strategies, namely delaying and breaking commitments. The idea of delaying commitments is that a shipper will not agree with the best bid whenever it is above a certain reserve price. The idea of breaking commitments is that the shipper allows the carriers to break commitments against certain penalties. The benefits of both strategies are evaluated with simulation. In addition we provide insight in the distribution of the lowest bid, which is estimated by the shippers

    Interaction between intelligent agent strategies for real-time transportation planning

    Get PDF
    In this paper we study the real-time scheduling of time-sensitive full truckload pickup-and-delivery jobs. The problem involves the allocation of jobs to a fixed set of vehicles which might belong to dfferent collaborating transportation agencies. A recently proposed solution methodology for this problem is the use of a multi-agent system where shipper agents other jobs through sequential auctions and vehicle agents bid on these jobs. In this paper we consider such a multi-agent system where both the vehicle agents and the shipper agents are using profit maximizing look-ahead strategies. Our main contribution is that we study the interrelation of these strategies and their impact on the system-wide logistical costs. From our simulation results, we conclude that the system-wide logistical costs (i) are always reduced by using the look-ahead policies instead of a myopic policy (10-20%) and (ii) the joint effect of two look-ahead policies is larger than the effect of an individual policy. To provide an indication of the savings that might be realized with a central solution methodology, we benchmark our results against an integer programming approach

    Look-ahead strategies for dynamic pickup and delivery problems

    Get PDF
    In this paper we consider a dynamic full truckload pickup and delivery problem with time-windows. Jobs arrive over time and are offered in a second-price auction. Individual vehicles bid on these jobs and maintain a schedule of the jobs they have won. We propose a pricing and scheduling strategy based on dynamic programming where not only the direct costs of a job insertion are taken into account, but also the impact on future opportunities. Simulation is used to evaluate the benefits of pricing opportunities compared to simple pricing strategies in various market settings. Numerical results show that the proposed approach provides high quality solutions, in terms of profits, capacity utilization, and delivery reliability

    Reinforcement learning for Order Acceptance on a shared resource

    Get PDF
    Order acceptance (OA) is one of the main functions in business control. Basically, OA involves for each order a reject/accept decision. Always accepting an order when capacity is available could disable the system to accept more convenient orders in the future with opportunity losses as a consequence. Another important aspect is the availability of information to the decision-maker. We use the stochastic modeling approach, Markov decision theory and learning methods from artificial intelligence to find decision policies, even under uncertain information. Reinforcement learning (RL) is a quite new approach in OA. It is capable of learning both the decision policy and incomplete information, simultaneously. It is shown here that RL works well compared with heuristics. Finding good heuristics in a complex situation is a delicate art. It is demonstrated that a RL trained agent can be used to support the detection of good heuristics
    • …
    corecore