41 research outputs found

    Clinical Relevance of Sinus Rhythm Mapping to Quantify Electropathology Related to Atrial Fibrillation

    Get PDF
    Progression of AF is accompanied by structural and electrical remodelling, resulting in complex electrical conduction disorders. This is defined as electropathology and it increases with the progression of AF. The severity of electropathology, thus, defines the stage of AF and is a major determinant of effectiveness of AF therapy. As specific features of AF-related electropathology are still unknown, it is essential to first quantify the electrophysiological properties of atrial tissue and then to examine the inter- and intra-individual variation during normal sinus rhythm. Comparison of these parameters between patients with and without a history of AF unravels quantified electrophysiological features that are specific to AF patients. This can help to identify patients at risk for early onset or progression of AF. This review summarises current knowledge on quantified features of atrial electrophysiological properties during sinus rhythm and discusses its relevance in identifying AF-related electropathology

    Detection of endo-epicardial atrial low-voltage areas using unipolar and omnipolar voltage mapping

    Get PDF
    Background: Low-voltage areas (LVA) can be located exclusively at either the endocardium or epicardium. This has only been demonstrated for bipolar voltages, but the value of unipolar and omnipolar voltages recorded from either the endocardium and epicardium in predicting LVAs at the opposite layer remains unknown. The goal of this study was therefore to compare simultaneously recorded endo-epicardial unipolar and omnipolar potentials and to determine whether their voltage characteristics are predictive for opposite LVAs. Methods: Intra-operative simultaneous endo-epicardial mapping (256 electrodes, interelectrode distances 2 mm) was performed during sinus rhythm at the right atrium in 93 patients (67 ± 9 years, 73 male). Cliques of four electrodes (2 × 2 mm) were used to define maximal omnipolar (V(omni,max)) and unipolar (V(uni,max)) voltages. LVAs were defined as V(omni,max) ≤0.5 mV or V(uni,max) ≤1.0 mV. Results: The majority of both unipolar and omnipolar LVAs were located at only the endocardium (74.2% and 82.0% respectively) or epicardium (52.7% and 47.6% respectively). Of the endocardial unipolar LVAs, 25.8% were also located at the opposite layer and 47.3% vice-versa. In omnipolar LVAs, 18.0% of the endocardial LVAs were also located at the epicardium and 52.4% vice-versa. The combination of epicardial V(uni,max) and V(omni,max) was most accurate in identifying dual-layer LVAs (50.4%). Conclusion: Unipolar and omnipolar LVAs are frequently located exclusively at either the endocardium or epicardium. Endo-epicardial LVAs are most accurately identified using combined epicardial unipolar and omnipolar voltages. Therefore, a combined endo-epicardial unipolar and omnipolar mapping approach is favoured as it may be more indicative of possible arrhythmogenic substrates

    Novel insights in pathophysiology of postoperative atrial fibrillation

    Get PDF
    OBJECTIVES: Atrial extrasystoles are usually benign; however, they can also trigger atrial fibrillation. It is most likely that if atrial extrasystoles provoke a larger amount of conduction disorders and a greater degree of endo-epicardial asynchrony, the risk of postoperative atrial fibrillation increases. To test this hypothesis, we investigated the effect of programmed atrial extrasystoles on endo-epicardial conduction and postoperative atrial fibrillation. METHODS: Twelve patients (58% male, age 68 ± 7 years) underwent simultaneous endo-epicardial mapping (256 electrodes) of the right atrium during sinus rhythm and programmed atrial extrasystoles provoked from the right atrial free wall. Areas of conduction block were defined as conduction delays of ≥12 milliseconds and endo-epicardial asynchrony as activation time differences of exact opposite electrodes of ≥15 milliseconds. RESULTS: Endo-epicardial mapping data of all programmed atrial extrasystoles were analyzed and compared with sinus rhythm (median preceding cycle length = 531 milliseconds [345-787] and median sinus rhythm cycle length = 843 milliseconds [701-992]). All programmed atrial extrasystoles were aberrant (severe, moderate, and mildly aberrant, respectively, n = 6, 3, and 3) and had a mean prematurity index of 50.1 ± 11.9%. The amount of endo-epicardial asynchrony (1% [1-2] vs 6.7 [2.7-16.9], P = .006) and conduction block (1.4% [0.6-2.6] vs 8.5% [4.2-10.4], P = .005) both increased during programmed atrial extrasystoles. Interestingly, conduction block during programmed atrial extrasystoles was more severe in patients (n = 4, 33.3%) who developed postoperative atrial fibrillation (5.1% [2.9-8.8] vs 11.3% [10.1-12.1], P = .004). CONCLUSIONS: Atrial conduction disorders and endo-epicardial asynchrony, which play an important role in arrhythmogenesis, are enhanced during programmed atrial extrasystoles compared with sinus rhythm. The findings of this pilot study provide a possible explanation for enhanced vulnerability for postoperative atrial extrasystoles to induce postoperative atrial fibrillation in patients after cardiac surgery

    Atrial extrasystoles enhance low-voltage fractionation electrograms in patients with atrial fibrillation

    Get PDF
    BACKGROUND AND AIMS: Atrial extrasystoles (AES) provoke conduction disorders and may trigger episodes of atrial fibrillation (AF). However, the direction- and rate-dependency of electrophysiological tissue properties on epicardial unipolar electrogram (EGM) morphology is unknown. Therefore, this study examined the impact of spontaneous AES on potential amplitude, -fractionation, -duration, and low-voltage areas (LVAs), and correlated these differences with various degrees of prematurity and aberrancy. METHODS AND RESULTS: Intra-operative high-resolution epicardial mapping of the right and left atrium, Bachmann's Bundle, and pulmonary vein area was performed during sinus rhythm (SR) in 287 patients (60 with AF). AES were categorized according to their prematurity index (&gt;25% shortening) and degree of aberrancy (none, mild/opposite, moderate and severe). In total, 837 unique AES (457 premature; 58 mild/opposite, 355 moderate, and 154 severe aberrant) were included. The average prematurity index was 28% [12-45]. Comparing SR and AES, average voltage decreased (-1.1 [-1.2, -0.9] mV, P &lt; 0.001) at all atrial regions, whereas the amount of LVAs and fractionation increased (respectively, +3.4 [2.7, 4.1] % and +3.2 [2.6, 3.7] %, P &lt; 0.001). Only weak or moderate correlations were found between EGM morphology parameters and prematurity indices (R2 &lt; 0.299, P &lt; 0.001). All parameters were, however, most severely affected by either mild/opposite or severely aberrant AES, in which the effect was more pronounced in AF patients. Also, there were considerable regional differences in effects provoked by AES. CONCLUSION: Unipolar EGM characteristics during spontaneous AES are mainly directional-dependent and not rate-dependent. AF patients have more direction-dependent conduction disorders, indicating enhanced non-uniform anisotropy that is uncovered by spontaneous AES.</p

    Characterization of pre-existing arrhythmogenic substrate associated with de novo early and late postoperative atrial fibrillation

    Get PDF
    Background: PoAF is the most common complication after cardiac surgery and may occur in patients with pre-existing arrhythmogenic substrate. Characterization of this substrate could aid in identifying patients at risk for PoAF. We therefore compared intra-atrial conduction parameters and electrogram morphology between patients without and with early- (≤5 days after surgery) and late- (up to 5 years) postoperative atrial fibrillation (PoAF). Methods and results: Epicardial mapping of the right and left atrium and Bachmann's Bundle (BB) was performed during sinus rhythm (SR) in 263 patients (207male, 67 ± 11 years). Unipolar potentials were classified as single, short or long double and fractionated potentials. Unipolar voltage, fractionation delay (time difference between the first and last deflection), conduction velocity (CV) and conduction block (CB) prevalence were measured. Comparing patients without (N = 166) and with PoAF (N = 97), PoAF was associated with lower CV and more CB at BB. Unipolar voltages were lower and more low-voltage areas were found at the left and right atrium and BB in PoAF patients. These differences were more pronounced in patients with late-PoAF (6%), which could even occur up to 5 years after surgery. Although several electrophysiological parameters were related to PoAF, age was the only independent predictor. Conclusions: Patients with de novo PoAF have more extensive arrhythmogenic substrate prior to cardiac surgery compared to those who remained in SR, which is even more pronounced in late-PoAF patients. Future studies should evaluate whether intra-operative electrophysiological examination enables identification of patients at risk for developing PoAF and hence (preventive) therapy.</p

    Biatrial arrhythmogenic substrate in patients with hypertrophic obstructive cardiomyopathy

    Get PDF
    Background: Atrial fibrillation (AF) in patients with hypertrophic obstructive cardiomyopathy (HOCM) may be caused by a primary atrial myopathy. Whether HOCM-related atrial myopathy affects mainly electrophysiological properties of the left atrium (LA) or also the right atrium (RA) has never been investigated. Objective: The purpose of this study was to characterize atrial conduction and explore differences in the prevalence of conduction disorders, potential fractionation, and low-voltage areas (LVAs) between the RA and LA during sinus rhythm (SR) as indicators of potential arrhythmogenic areas. Methods: Intraoperative epicardial mapping of both atria during SR was performed in 15 HOCM patients (age 50 ± 12 years). Conduction delay (CD) and conductin block (CB), unipolar potential characteristics (voltages, fractionation), and LVA were quantified. Results: Conduction disorders and LVA were found scattered throughout both atria in all patients and did not differ between the RA and LA (CD: 2.9% [1.9%–3.6%] vs 2.6% [2.1%–6.4%], P = .541; CB: 1.7% [0.9%–3.1%] vs 1.5% [0.5%–2.8%], P = .600; LVA: 4.7% [1.6%–7.7%] vs 2.9% [2.1%–7.1%], P = .793). Compared to the RA, unipolar voltages of single potentials (SPs) and fractionated potentials (FPs) were higher in the LA (SP: P75 7.3 mV vs 10.9 mV; FP: P75 2.0 mV vs 3.7 mV). FP contained low-voltage components in only 18% of all LA sites compared to 36% of all RA sites. Conclusion: In patients with HOCM, conduction disorders, LVA, and FP are equally present in both atria, supporting the hypothesis of a primary atrial myopathy. Conceptually, the presence of a biatrial substrate and high-voltage FP may contribute to failure of ablative therapy of atrial tachyarrhythmias in this population

    In-vivo Sino-Atrial Node Mapping in Children and Adults With Congenital Heart Disease

    Get PDF
    BACKGROUND: Sinus node dysfunction (SND) and atrial tachyarrhythmias frequently co-exist in the aging patient with congenital heart disease (CHD), even after surgical correction early in life. We examined differences in electrophysiological properties of the sino-atrial node (SAN) area between pediatric and adult patients with CHD. METHODS: Epicardial mapping of the SAN was performed during sinus rhythm in 12 pediatric (0.6 [0.4–2.4] years) and 15 adult (47 [40–55] years) patients. Unipolar potentials were classified as single-, short or long double- and fractionated potentials. Unipolar voltage, relative R-to-S-amplitude ratio and duration of all potentials was calculated. Conduction velocity (CV) and the amount of conduction block (CB) was calculated. RESULTS: SAN activity in pediatric patients was solely observed near the junction of the superior caval vein and the right atrium, while in adults SAN activity was observed even up to the middle part of the right atrium. Compared to pediatric patients, the SAN region of adults was characterized by lower CV, lower voltages, more CB and a higher degree of fractionation. At the earliest site of activation, single potentials from pediatrics consisted of broad monophasic S-waves with high amplitudes, while adults had smaller rS-potentials with longer duration which were more often fractionated. CONCLUSIONS: Compared to pediatric patients, adults with uncorrected CHD have more inhomogeneous conduction and variations in preferential SAN exit site, which are presumable caused by aging related remodeling. Long-term follow-up of these patients is essential to demonstrate whether these changes are related to development of SND and also atrial tachyarrhythmias early in life

    First Evidence of Atrial Conduction Disorders in Pediatric Patients With Congenital Heart Disease

    Get PDF
    This study sought to investigate whether pediatric patients with congenital heart disease (CHD) already have atrial conduction disorders early in life. The authors conducted first-in-children epicardial mapping in 10 pediatric patients with CHD undergoing primary open heart surgery. Areas of conduction delay (CD) and block (CB) were present in all patients and were particularly observed at Bachmann's bundle (CD: 4.9%; CB: 2.3%), followed by the right atrium (CD: 3.7%; CB: 1.6%) and, to a lesser degree, the left atrium (CD: 1.8%; CB: 1.0%). Conduction abnormalities may by aggravated over time (e.g., aging, residual lesions, or valvular dysfunction), predisposing these patients to atrial arrhythmias early in life
    corecore