2 research outputs found

    Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study

    Get PDF
    BACKGROUND: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population. METHODS: A multi-national cohort study with data from primary care, electronic health records, and insurance claims mapped to a common data model. This study's evidence was collected between Jan 1, 2017 and the conclusion of each database (which ranged from Jul 2020 to May 2022). The 16 pre-specified prevalent AESIs were: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain- Barré syndrome, haemorrhagic stroke, non-haemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, transverse myelitis, and thrombosis with thrombocytopenia. Age-sex standardised incidence rate ratios (SIR) were estimated to compare post-COVID-19 to pre-pandemic rates in each of the databases. FINDINGS: Substantial heterogeneity by age was seen for AESI rates, with some clearly increasing with age but others following the opposite trend. Similarly, differences were also observed across databases for same health outcome and age-sex strata. All studied AESIs appeared consistently more common in the post-COVID-19 compared to the historical cohorts, with related meta-analytic SIRs ranging from 1.32 (1.05 to 1.66) for narcolepsy to 11.70 (10.10 to 13.70) for pulmonary embolism. INTERPRETATION: Our findings suggest all AESIs are more common after COVID-19 than in the general population. Thromboembolic events were particularly common, and over 10-fold more so. More research is needed to contextualise post-COVID-19 complications in the longer term. FUNDING: None

    Transforming the Information System for Research in Primary Care (SIDIAP) in Catalonia to the OMOP Common Data Model and Its Use for COVID-19 Research

    No full text
    Berta Raventós,1,2,* Sergio Fernández-Bertolín,1,* María Aragón,1 Erica A Voss,3– 5 Clair Blacketer,3– 5 Leonardo Méndez-Boo,6 Martina Recalde,1 Elena Roel,1,2 Andrea Pistillo,1,7 Carlen Reyes,1 Sebastiaan van Sandijk,8 Lars Halvorsen,9 Peter R Rijnbeek,4,5 Edward Burn,1,10 Talita Duarte-Salles1,4 1Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; 2Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain; 3Janssen Pharmaceutical Research and Development, Titusville, NJ, USA; 4Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands; 5OHDSI Collaborators, Observational Health Data Sciences and Informatics (OHDSI), New York, NY, USA; 6Sistemes d’Informació dels Serveis d’Atenció Primària (SISAP), Institut Català de la Salut, Barcelona, Spain; 7Universitat Pompeu Fabra, Barcelona, Spain; 8Odysseus Data Services s.r.o., Prague, Czech Republic; 9edenceHealth NV, Kontich, Belgium; 10Centre for Statistics in Medicine, University of Oxford, Oxford, UK*These authors contributed equally to this workCorrespondence: Talita Duarte-Salles, Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Gran Via Corts Catalanes, 587 àtic, Barcelona, 08007, Spain, Tel +34935824342, Email [email protected]: The primary aim of this work was to convert the Information System for Research in Primary Care (SIDIAP) from Catalonia, Spain, to the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). Our second aim was to provide a descriptive analysis of COVID-19-related outcomes among the general population.Patients and Methods: We mapped patient-level data from SIDIAP to the OMOP CDM and we performed more than 3,400 data quality checks to assess its readiness for research. We established a general population cohort as of the 1st March 2020 and identified outpatient COVID-19 diagnoses or tested positive for, hospitalised with, admitted to intensive care units (ICU) with, died with, or vaccinated against COVID-19 up to 30th June 2022.Results: After verifying the high quality of the transformed dataset, we included 5,870,274 individuals in the general population cohort. Of those, 604,472 had either an outpatient COVID-19 diagnosis or positive test result, 58,991 had a hospitalisation, 5,642 had an ICU admission, and 11,233 died with COVID-19. A total of 4,584,515 received a COVID-19 vaccine. People who were hospitalised or died were more commonly older, male, and with more comorbidities. Those admitted to ICU with COVID-19 were generally younger and more often male than those hospitalised and those who died.Conclusion: We successfully transformed SIDIAP to the OMOP CDM. From this dataset, a general population cohort of 5.9 million individuals was identified and their COVID-19-related outcomes over time were described. The transformed SIDIAP database is a valuable resource that can enable distributed network research in COVID-19 and beyond.Keywords: electronic health records, medical ontologies, secondary data use, common data model, OMO
    corecore